
can choose among several options (po-
litical vote, opinion, cultural features,
and so on) lead to a consensus in one of
those options, or when a state with sev-
eral coexisting social options prevails.
Many researchers seek to identify the
mechanisms that produce the latter,
called a polarized state, in the face of
general convergent dynamics. The
problem of spatially distributed agents,
for example, shares many characteris-
tics with the problem of domain
growth in phase-transition kinetics:7

consensus emerges when a single spa-
tial domain grows to occupy the entire
system, whereas polarization corre-
sponds to a situation in which the sys-
tem isn’t ordered and different spatial
domains compete.

In this article, we consider stochastic
dynamic models studied via computer
simulation. We’ll review some basic re-
sults for the voter model,8 which is
probably the simplest model of collec-
tive behavior. Specifically, we’ll focus on
the dynamical effect of who interacts
with whom—that is, the consequences
of different interaction networks. We’ll
also consider R. Axelrod’s model9 for
the dissemination of culture.

The Voter Model
The voter model8,10–16 is defined by a

set of “voters” that have two opinions
or spins si = ±1 at a network’s nodes.
The elementary dynamical step con-
sists of randomly choosing a node and
assigning it the opinion or spin value of
one of its nearest neighbors, also cho-
sen at random. This opinion-forma-
tion mechanism reflects the agents’
complete lack of self-confidence and
thus could be appropriate for describ-
ing processes of opinion formation in
certain groups in which imitation is
prevalent (such as groups of teenagers).
The dynamical rule implemented here
corresponds to a node update. An alter-
native dynamic is link update, in which
the elementary dynamical step consists
of randomly choosing a pair of nearest-
neighbor spins—a link—and randomly
assigning the same value to both of
them if they have different values (leav-
ing them unchanged otherwise). These
two updating rules are equivalent in a
regular lattice, but they differ in com-
plex networks in which different nodes
have different numbers of nearest
neighbors.14

The voter model dynamics has two
absorbing states (the states in which the
system is trapped once they are
reached). The absorbing states here
correspond to situations in which all
spins converge to the si = 1 or si = –1

consensus states. The ordering dy-
namics here—which are stochastic and
driven by interfacial noise—differ from
a Glauber kinetic7 Ising model’s order-
ing dynamics, in which surface-tension
minimization drives the dynamics. A
standard parameter for describing the
ordering process12,13 is the average of
the interface density �, defined as the
density of links connecting sites with
different spin values. In a disordered
configuration with randomly distrib-
uted spins, � � 1/2; for a completely
ordered system, � � 0. In regular lat-
tices of dimensionality d � 2, the sys-
tem is ordered, meaning that in the
large system’s limit there is a coarsen-
ing process with unbounded growth of
one of the absorbing state’s spatial do-
mains: in other words, consensus is
reached. The asymptotic approach to
the ordered state is characterized in d
= 1 by a power law ��� ~ t–1/2, whereas
for the critical dimension d = 2, loga-
rithmic decay ��� ~ (lnt)–1.10,12 Here,
the average ��� is an ensemble average.

In regular lattices with d > 2, as well
as in small-world networks17 and
scale-free Barabasi-Albert net-
works,18 the voter dynamics don’t or-
der the system in a large system’s
thermodynamic limit.11,13,14 Starting
from a random initial condition and
after an initial transient, the system
falls into a partially ordered
metastable state. In the initial tran-
sient of a given process realization, �
initially decreases, indicating a partial
ordering of the system, but after this
initial transient, � fluctuates ran-
domly around an average plateau

20 Copublished by the IEEE CS and the AIP        1521-9615/05/$20.00 © 2005 IEEE COMPUTING IN SCIENCE & ENGINEERING
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value. In a finite system, the
metastable state has a finite lifetime:
a finite-sized fluctuation takes the sys-
tem from the metastable state to one
of the two ordered absorbing states.
In this process, the fluctuation orders
the system, and � changes from its
metastable plateau value to � = 0 (see
Figure 1). The metastable state’s life-
time � (for a regular lattice11 in d = 3
and also for a small-world network13)
scales linearly with the system size N,
� ~ N; researchers have found a scal-
ing � ~ N0.88 for the voter model in
the scale-free Barabasi-Albert net-
work.14 The fact that a large system
isn’t ordered in a small-world or
scale-free network seems counterin-
tuitive: we could argue that long-dis-
tance links (small world) or nodes
with many links (hubs in a scale-free
network) should be instrumental in
ordering the system. Conversely, we
could argue that what we’ve observed
corresponds to a network of large di-
mensionality: these complex networks
have an effective infinite dimension
because the average path length be-
tween two nodes grows logarithmi-
cally (or slower) with system size.

To understand the role of dimen-
sionality and degree distribution—that
is, the probability for a node to have k
links (degrees)—let’s examine the voter
dynamics in the structured scale-free
(SSF) network.19 SSF networks have a
degree distribution P(k) ~ k–3, but
they’re effectively one-dimensional:
the average path length scales linearly
with system size L ~ N. The simulation
results in Figure 2 indicate that the
voter model’s dynamics in an SSF net-
work and a regular d = 1 network are
essentially the same: the system is or-
dered with the average interface den-
sity decreasing with a power law (that
has a characteristic exponent 1/2). This
identical behavior for two different

networks identifies dimensionality, not
degree distribution, as the relevant pa-
rameter for classifying different classes
of the voter model’s ordering dynamics
in complex networks.

We can also study the voter model in
other complex networks of dimension
d > 1 characterized by a parameter p
measuring the network’s disorder. This

parameter is the one originally used to
characterize a small-world network,17

varying continuously from p = 0 (regu-
lar network) to p = 1 (random network).
Network disorder decreases the
metastable disordered states’ lifetimes;
likewise, these states’ lifetimes decrease
when the networks have nodes with
many links.16
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Figure 1. Interface density evolution. For an individual realization in a scale-free
Albert-Barabasi network with N = 10,000 nodes and average connectivity <k> = 8, we
see an eventual sharp drop, which is caused by a finite-sized fluctuation.
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Figure 2. Voter model. Mean interface density evolution in a regular d = 1 network
and in a structured scale-free network are essentially the same. The continuous line
indicates a power law decay with exponent –1/2.



22 COMPUTING IN SCIENCE & ENGINEERING

C O M P U T E R  S I M U L A T I O N S

The Axelrod Model
Axelrod9 first addressed the issue of
cultural diversity by asking the follow-
ing question: if people tend to become
more alike in their beliefs, attitudes,
and behavior when they interact, why
don’t all differences eventually disap-
pear? To answer this question, he pro-
posed a model for exploring
mechanisms of competition between
globalization (consensus) and coexis-
tence of several cultural options (po-
larization). The model’s basic premise
is that the more similar an actor is to a
neighbor, the more likely the actor will
adopt one of the neighbor’s traits. In
addition to treating culture as multidi-
mensional (not binary), the model’s
novelty is that its dynamics take into
account the interactions among differ-
ent cultural features. The model is de-
fined by considering N agents as an
interaction’s network nodes. The state
of agent i is a vector of F components

(cultural features; �i1, �i2, …, �iF). Each
�if is one of the q integer values (cul-
tural traits; 1, …, q) initially assigned
independently and with equal proba-
bility 1/q. The time-discrete dynamics
iterates the following steps:

1. Select at random a pair of sites of
the network connected by a link
(i, j).

2. Calculate the overlap (number of
shared features �ik = �jk) lij.

3. If 0 < lij < F, the link is said to be
active, and sites i and j interact
with probability lij/F (similarity
rule). In case of interaction,
choose g randomly such that �ig �
�jg and set �ig = �jg.

The Axelrod model has qF equivalent
cultural options, and it reaches con-
sensus (global culture) if a domain of
one of these options occupies the en-
tire system. For q = 2, we can view Ax-

elrod’s model as a set of F coupled
voter models. For a general value of q,
it still shares with the voter model the
basic stochastic dynamics driven by in-
terfacial noise (see Figure 3). In fact,
interfacial noise dissolves an initial
condition of one of the qF cultures’
bubbles on the background of another
cultural option with only one feature in
common. Figure 4 shows several snap-
shots of the dynamical evolution from
random initial conditions in a d = 2
square lattice (see www.imedea.uib.es/
physdept/research_topics/socio/
culture.html). For a given value of F,
the evolution from initial random con-
ditions leads to a state of global culture
(consensus) or a multicultural state de-
pending on the value of q. The para-
meter q is a measure of the degree of
initial disorder in the system. The fact
that the system dynamics leads to mul-
ticultural disordered states illustrates
how local convergence, enforced by

Figure 3. Axelrod’s model. For a system size N = 128 � 128 with parameter values F = 3 and q = 15, different colors indicate
different cultural states in snapshots of the model’s evolution at times t = 0, 114, 272, and 1,331.

Figure 4. Dynamical evolution. For a system size N = 32 � 32 with parameter values F = 3 and q = 10, snapshots of the time
evolution of Axelrod model from random initial conditions at times t = 0, 1,000, 3,000, and 6,807 show the emergence of cultural
domains. At time t = 6,807, the dynamics stop and the configuration freezes.
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the similarity rule in the dynamics, can
generate global polarization.

We can perform a systematic analysis
of the dependence on q from a statisti-
cal physics viewpoint via Monte Carlo
computer simulations.20 Defining an or-
der parameter as the mean value of the
relative size of the largest homogeneous
cultural domain Smax, we find a non-
equilibrium order–disorder transition as
shown in Figure 5 for a d = 2 square lat-
tice. There exists a threshold value qc,
such that for q < qc, the system is ordered
in a consensus, monocultural, uniform
state (<Smax>/N ~ 1), whereas for q > qc,
the system freezes in a polarized or mul-
ticultural state (<Smax> << N). The tran-
sition becomes sharp and well-defined
for large systems, and is a first-order
transition in d = 2, but it becomes a con-
tinuous transition in d = 1.21–23 In d = 1,
the Axelrod dynamics are an optimiza-
tion dynamics for which we can find a
Lyapunov potential.23 (F = 2 is a special
case20,22 that we won’t discuss here.)
Both qc and the transition itself are de-
fined by considering the dynamical evo-
lution for an initial random disordered
configuration, not for arbitrary initial
conditions. We use here a set of uniform
random initial conditions, but other au-
thors have used a Poisson distribution
for the initial random values of q.20

The Axelrod Model in
Complex Networks
The network of interactions among
agents accounts for the local geography
in Axelrod’s model. Following our dis-
cussion of the voter model, wondering
how to modify the results for a com-
plex network is natural.24 An expecta-
tion is that with random long-distance
interactions, local interactions can no
longer maintain heterogeneity.9 For a
small-world network, we find that the
transition remains sharply defined as
system size increases, but it shifts to

larger values of q as the disorder para-
meter p increases. As expected, small-
world connectivity favors cultural
globalization. With the phase diagram
in Figure 6, we observe that for a given
value of q in which the system is in a
polarized state in a regular network, we
can reach consensus (global culture) by
increasing the disorder parameter of
the network p.

In a scale-free Barabasi-Albert net-
work,18 the Axelrod model’s order–dis-
order transition becomes system-size

dependent, and the critical value qc
shifts to larger and larger values as N
increases until a state of global culture
(consensus) prevails in the large sys-
tems’ limits. Moreover, for a fixed large
value of N and fixed average connec-
tivity <k>, qc is larger in a scale-free
network than the limiting value of qc
found for p = 1 in a small-world net-
work, and the scale-free connectivity is
more efficient than a random connec-
tivity (p = 1) in promoting global cul-
ture. These results for the Axelrod
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Figure 5. Order–disorder transition. Normalized order parameter <Smax>/N is a
function of q for d = 2 square lattices of sizes N = 50 � 50 and N = 100 � 100 for F = 10.
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Figure 6. Phase diagram. For the Axelrod model in a small-world network of size N =
5002 for F = 10, the green area (q, p) parameters show we’ve reached a polarized or
multicultural state. The other side of the continuous curve corresponds to
parameters for which we’ve reached consensus (state of global culture).24
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model parallel what happens for a ki-
netic Ising model: the small-world con-
nectivity increases the critical
temperature, whereas the critical tem-
perature diverges with system size in a
scale-free network.

As with the voter model discussion,
we can also ponder degree distribu-
tion’s role. The transition disappears
for large systems in a scale-free
Barabasi-Albert network, but in the
SSF network,19 we find that the transi-
tion remains well-defined at a finite
value of q for large systems. The con-
clusion is that the interaction network’s
spatial dimensionality, not just the
presence of hubs, gives rise to the di-
vergence of qc with N. On the other
hand, hubs create local order in the
system so that <Smax> takes a finite
value for the multicultural disordered
state in an SSF network.

Cultural Drift: 
Exogenous Perturbations 
in the Axelrod Model
Among the open questions Axelrod
discussed in his original work,9 he
mentions that “perhaps the most in-
teresting extension and at the same
time, the most difficult one to analyze
is cultural drift.” Specifically, he sug-
gests modeling it as spontaneous
changes of cultural traits. Cultural
drift takes into account that there is

always some influence between
neighbors, even when they have com-
pletely different cultures. In the lan-
guage of physics simulations, he’s
asking about the role of noise in the
order–disorder transition. 

The stochastic dynamics giving rise
to this transition are zero-temperature
dynamics. The question is whether this
transition is robust against the presence
of fluctuations or if any finite fluctua-
tion disorders the system, as happens in
the d = 1 kinetic Ising model. Generally
speaking, noise is known to have two
different effects: one produces disorder
by fluctuation accumulation and the
other helps the system find paths in
which it can escape from the frozen
disordered configurations that lead to
ordered states. An alternative way of
formulating the question is whether ex-
ternal perturbations acting on a frozen
multicultural state can take the system
to the consensus state. To address these
issues, we implement cultural drift in
the model by adding a fourth step in
the iterated loop of the dynamics de-
fined earlier:25

4. With probability r, perform a sin-
gle feature perturbation in which
randomly choosing an agent i and
one of its features f, the trait �if is
replaced by a new randomly cho-
sen value.

Figure 7 shows simulation results for
a d = 2 square lattice: we observe a tran-
sition from multicultural to consensus
states controlled by an effective noise
rate r� = r(1 – 1/q). The factor (1 – 1/q)
takes into account the probability that
the single feature perturbation doesn’t
change the trait’s value. This is a noise-
induced transition because the control
parameter is a noise property. In addi-
tion, the transition has universal scal-
ing properties with respect to q: we find
the same result for different values of q
and a consensus state for any value of q
as r goes to zero. Therefore, cultural
drift destroys the transition controlled
by q that we find in the absence of ex-
ogenous perturbations (r = 0). In this
sense, noise here is an essential para-
meter that completely changes the type
of transition the system exhibits. 

An additional important point is the
character of the states found at both
sides of the noise-induced transition.
The disordered multicultural state found
for large r is no longer a frozen configu-
ration—rather, it exhibits disordered
noise-sustained dynamics. On the other
hand, the consensus or ordered state
found for small r is metastable. Once it
reaches one of the equivalent qF cultural
states, the system doesn’t stay there for-
ever, but eventually a fluctuation takes it
from this state to another one of the
equivalent qF states, as Figure 8 shows.

Why does the noise rate cause a
transition? Here, we have a competi-
tion between two time scales: the time
scale at which noise acts (1/r) and the
relaxation time of perturbations T. For
a small noise rate r, there is time to re-
lax, and the system decays to a consen-
sus state, but for a large noise rate,
stochastic perturbations accumulate
and multicultural disorder builds up.
We then expect the transition to occur
for rT ~ 1. We can calculate the relax-
ation time T of perturbations as an exit
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time in a random walk.23,25 A mean-
field approximation gives it as the time
needed to reach consensus in a finite
system following the voter model dy-
namics; for a d = 2 square lattice, this is
T ~ N ln N.11,25 The noise-induced
transition occurs for a system-size-de-
pendent value of r, but curves such as
the ones plotted in Figure 8 for differ-
ent values of N collapse into a single
curve when plotted versus rN ln N.25

The general result is that in very large
systems’ limits, disordered multicul-
tural states prevail at any noise rate.
Thus cultural drift causes global polar-
ization in large systems, but as a state
with noise-sustained dynamics rather
than a frozen configuration of spatially
coexisting equivalent cultures.

A n interesting open question for
future developments is to go

beyond the static networks of interac-
tion considered here, allowing for a
co-evolution of the network and
agent states. Other computer simula-
tions of social dynamics have already
started to implement this general idea
of co-evolution.26
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