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Abstract

How individual nucleoporins (Nups) perform their role in nuclear pore structure and function is largely

unknown. In this study, we examined the structure of purified Nup170 to obtain clues about its function.

We show that Nup170 adopts a crescent moon shape with two structurally distinct and separable

domains, a β-propeller N terminus and an α-solenoid C terminus. To address the individual roles of each

domain, we expressed these domains separately in yeast. Notably, overexpression of the Nup170 C

domain was toxic in nup170Δ cells and caused accumulation of several Nups in cytoplasmic foci. Further

experiments indicated that the C-terminal domain anchors Nup170 to nuclear pores, whereas the N-

terminal domain functions to recruit or retain a subset of Nups, including Nup159, Nup188, and Pom34,

at nuclear pores. We conclude that Nup170 performs its role as a structural adapter between

cytoplasmically oriented Nups and the nuclear pore membrane.

Introduction

The nuclear pore complex (NPC) is a supramolecular assembly that is inserted in the nuclear envelope

(NE) and mediates nucleocytoplasmic transport (Fahrenkrog and Aebi, 2003; Tran and Wente, 2006).

The NPC scaffold is characterized by distinct substructures that are arranged with an eightfold rotational

symmetry (Stoffler et al., 1999; Beck et al., 2007). The NPC in the yeast Saccharomyces cerevisiae is

∼60 MD in size and consists of multiple copies of ∼30 different proteins called nucleoporins (Nups; Rout

et al., 2000).

One of the major structural components of the NPC is Nup170, which is required for the maintenance of

a normal NPC structure and is implicated to have a role in NPC biogenesis (Aitchison et al., 1995).

Nup170 and its highly related homologue Nup157 were identified in a synthetic lethal screen using the

nuclear pore membrane protein Pom152. Neither NUP157 nor NUP170 are essential, but deletion of both

genes caused a lethal phenotype. Genetic analyses showed that a nup170Δ pom152Δ double mutant was

lethal, whereas the combination nup157Δ pom152Δ allowed cell growth. Repression of NUP170 in a

pom152Δ background induced the formation of an irregularly shaped NE with massive extensions and

invaginations. In addition, structures interpreted as partially assembled NPCs were described in the

respective strains to be located below the double membrane (Aitchison et al., 1995). Nup170 was shown

to be required for normal stoichiometry of FG Nups and to be involved in localizing specific FG Nups

(e.g., Nup1 and Nup2) within the NPC (Kenna et al., 1996). Moreover, Nup170 forms a complex with

Nup53 and Nup59 and also associates with the nuclear transport receptor Kap121 (Marelli et al., 1998).
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Nup53 itself was shown to interact with Ndc1, which is another nuclear pore membrane protein,

suggesting that Nup53 could bridge between the NPC core and the pore membrane, making it a prime

candidate to affect both nuclear pore membrane and NPC biogenesis in conjunction with Nup170 (Galy

et al., 2003; Mansfeld et al., 2006; Hawryluk-Gara et al., 2008). Consistent with this possibility,

overproduction of Nup53 disturbed NE organization (Marelli et al., 2001). Nup170, as well as Nup188,

another large structural Nup, has also been implicated in the control of NPC permeability by altering the

diameter for passive diffusion in nup170Δ cells (Shulga et al., 2000).

Nup157 and Nup170, both belonging to the large structural Nups, are predicted to contain an N-terminal

β-propeller and a C-terminal α-solenoid domain (Devos et al., 2006). Although both proteins are highly

similar and have overlapping functions, they also have unique roles. For example, Nup170 is involved in

chromosome segregation and kinetochore function, which was not found for Nup157 (Kerscher et al.,

2001). Recently, Nup170 was suggested to be located adjacent to the center of the nuclear membrane

curvature and thus could play a role in the buildup of the NPC scaffold (Alber et al., 2007).

Knowledge of a detailed structural buildup of Nups at the atomic level is still limited, although x-ray

structures of scaffold NPC components are emerging (Hodel et al., 2002; Berke et al., 2004; Weirich et

al., 2004; Melcak et al., 2007). The largest structure so far of a single Nup (Nic96) was solved recently

and showed deviations from the predicted α-solenoid fold (Jeudy and Schwartz, 2007; Schrader et al.,

2008). Structural analysis of full-length Nups was only performed by EM, and a first 3D reconstruction

of Nup157 revealed a crescent-shape structure (Lutzmann et al., 2005).

In this study, we determined the structure of full-length Nup170 by EM. Nup170 has a crescent-shaped

morphology with two structurally distinct and separable domains. The overproduction of the C-terminal

domain of Nup170 induces a toxic phenotype in nup170Δ cells. Concomitant to Nup170C overexpression,

several other Nups, including Nup159, Nup82, Nup188, and Pom34, were mislocalized to cytoplasmic

foci. This toxicity of Nup170C was reversed by coexpression of Nup170N, which led to an interaction

between both domains and assembly into intact NPCs. Our data provide insight into the anatomy of a

large structural Nup with respect to domain organization, NPC targeting and maintenance, and stability

of the NPC.

Results and discussion

Nup170 has a crescent-shaped structure

To gain insight into the Nup170 morphology with respect to the arrangement of the structurally

predicted N and C domains, we sought to determine its 3D structure by EM. Expression and purification

of Nup170 from Escherichia coli was not possible because the recombinant protein had the tendency to

aggregate. However, a functional Nup170 protein genomically tagged with protein A–tobacco etch virus

(TEV)–Flag could efficiently be purified from yeast with only a minor contamination of fatty acid

synthase (FAS; Fig. 1 A, left). This purified Nup170 was subjected to EM analysis by performing negative

staining with uranyl acetate and imaging under low dose conditions.

The micrographs showed monodisperse particle distributions slightly contaminated by FAS (see previous

paragraph). Because of its characteristic morphology, the FAS did not interfere with the subsequent

image processing. The particle images revealed different views of Nup170 without a preferential

orientation, ranging from a globular to a crescent-like morphology (Fig. 1 A, right). For the calculation of

a 3D map, a series of micrographs were recorded, and particle images were selected from the

micrographs and aligned to sets of multiple references. Alignment to selected classes followed by

classification was repeated until stable classes were obtained (Fig. 1 B, top row). We assumed that these

class averages corresponded to different projections of a unique 3D shape, and, consequently, the class

averages were combined to a 3D map by back projection (Fig. 1 B, middle and bottom rows). The

accuracy of the map was tested by comparison of the class averages and the related reprojections of the

3D map. For the displayed volume, the class averages agreed reasonably well with the corresponding

reprojections.

The calculated 3D structure revealed that Nup170 has a crescent-shaped morphology with one end of the

crescent being significantly thicker than the other (Fig. 1, B and C; and Video 1). The overall dimensions

of the particle were 13 nm in length and 8 nm in width. The morphology of Nup170 determined in this
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study resembles that of Nup157 with a similar crescent shape (Lutzmann et al., 2005). Superposition of

the volumes of Nup170 and Nup157 showed the same curvature between the thicker end and the rest of

the particle for both Nups, with the thinner end being somewhat longer in Nup170. Considering the

general problems of reconstructing structures of low molecular weight complexes, the differences in the

details of the maps of Nup157 and Nup170 most likely reflect inaccuracies in the image reconstructions

rather than genuine differences in the architecture of the both molecules, which are highly homologous.

Next, we determined the EM structure of the C-terminal domain of Nup170. In this case, protein A–

tagged Nup170C (residues 755–1,502) was expressed in E. coli and purified to homogeneity (Fig. 1 D).

Nup170C was significantly shorter than full-length Nup170 but still exhibited the characteristic bending (

Fig. 1 D). However, the prominent mass present on the thick arm of the full-length Nup170 crescent was

absent in Nup170C, suggesting that this part corresponds to the Nup170 N domain (Fig. 1 C). Consistent

with this interpretation, the predicted N-terminal β-propeller and the C-terminal α-solenoid domain of

Nup170 (Devos et al., 2006) could be manually fitted, respectively, into the bulbous end and the rest of

the bend structure of the full-length Nup170 EM volume (Fig. 1 C). Altogether, the structural data

suggest that the C domain of Nup170 can fold independently from the N domain and thus could perform

separate functions.

Overexpression of the Nup170 C domain is toxic but can be rescued by coexpression of either
Nup170N or Nup157N

To find out whether distinct functions can be assigned to the Nup170 N and C domains, we expressed the

separate domains in yeast. NUP170 is not essential in yeast, and nup170Δ cells have a mildly impaired

cell growth (Fig. 2 A; Aitchison et al., 1995). To find out whether an overproduction of Nup170 interferes

with normal NPC biogenesis, we overexpressed full-length GAL NUP170 in nup170Δ cells grown but did

not observe an impaired cell growth (Fig. 1 A; Aitchison et al., 1995). However, when the Nup170 C-

terminal domain (i.e., the predicted α-solenoid; aa 721–1,502) was overexpressed in nup170Δ cells, cell

growth was inhibited (GAL NUP170C; Fig. 2 A). In contrast, overproduced GAL NUP170C was not

toxic in NUP170 wild-type cells (Fig. S1). Moreover, an overproduced GAL NUP170N construct (i.e., the

predicted β-propeller; aa 1–720) did not impair growth of nup170Δ cells but could rescue in trans the

lethal phenotype of GAL NUP170C (Fig. 2 A). These data indicate that overexpression of the Nup170 C

domain specifically induces a toxic phenotype in cells lacking NUP170.

Unexpectedly, Nup157C overexpressed from the GAL promoter did not cause a significant toxic

phenotype, neither in nup170Δ nor in nup157Δ cells (Fig. 2, B and C). However, induction of GAL

NUP157N could rescue the toxic phenotype of Nup170C overexpression (Fig. 2 B). This finding suggests

that the N domains of Nup170 and Nup157 can replace each other to neutralize the toxicity of the

overproduced Nup170 C domain.

To find out how overproduced Nup170C could induce a toxic phenotype in nup170Δ cells, we

investigated the NE targeting of GFP-labeled Nup170 constructs. In this case we expressed Nup170C

under the control of the constitutive NOP1 promoter, which is less strong than the GAL promoter.

Accordingly, NOP1 NUP170C was less toxic and exhibited a reduced expression when compared with

GAL NUP170C (Fig. 2 D and Fig. S1). In NUP170 wild-type cells, GFP-Nup170C expressed from the

NOP1 promoter significantly accumulated in the nucleus with no sign of an NE association (Fig. 3 A),

whereas in nup170Δ cells, GFP-Nup170C exhibited a punctate NE staining (Fig. 3 A). Besides this

predominant NPC location, Nup170C-GFP was occasionally seen in a cytoplasmic spot (Fig. 3 A; see

next section). In contrast, Nup170N was evenly distributed between the nucleus and cytoplasm in

nup170Δ cells, but was efficiently targeted to the NE upon coexpression of Nup170C (Fig. 3 A). These

findings indicate that Nup170C did not assemble into NPCs in the presence of chromosomal NUP170,

suggesting that endogenous Nup170 competes with Nup170C for a binding site in the NPC. Nup170C is

incorporated into NPCs in the absence of endogenous Nup170, pointing to the importance of the α-

solenoid in anchoring Nup170 to the NPC.

The observations that Nup170N can rescue the toxic phenotype of Nup170C in trans and that the

separated Nup170N is targeted to the NE upon Nup170C coexpression suggested that both domains can

physically interact. Consistent with this possibility, the N and C domains of Nup170 interact with each

other in vivo as shown by two-hybrid analysis (Fig. 3 B) and coprecipitation using protein A–tagged
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Nup170C and myc-tagged Nup170N (Fig. 3 C).

Nup170C overproduction induces accumulation of a subset of Nups in cytoplasmic foci

To find out whether the toxic overexpression of Nup170C affects assembly and/or structure of the NPC,

we analyzed the location of chromosomally integrated GFP-tagged Nups in nup170Δ cells. Most of the

GFP-tagged Nups exhibited a normal punctate NE staining in nup170Δ cells when GAL NUP170C was

not induced. Only Nup82-GFP (Fig. 4) and Nup159-GFP (not depicted), which are cytoplasmically

oriented Nups, were found in a few clustered foci that largely colocalized with the NE. However, the

induction of GAL NUP170C significantly increased the mislocalization of these Nups (Figs. 4 and 5).

Additionally, Nup188-GFP, which is part of the NPC structural core, showed a significantly altered

subcellular distribution upon GAL NUP170C induction in nup170Δ cells. In particular, Nup188-GFP

was often seen in cytoplasmic foci that were far away from the nuclear compartment, and several of

these cytoplasmic foci aligned on NE extensions protruding into the cytoplasm, like pearls on a string (

Fig. 4). When Nup170C was overexpressed, the transmembrane Nups Pom34-GFP (Fig. 4) and

Pom152-GFP (not depicted) also became mislocalized into the cytoplasm, but rather in a single spot than

several foci as observed for Nup188-GFP. Double fluorescence microscopy revealed that the cytoplasmic

foci containing CFP-marked Nup188 or Nup159 tend to colocalize with the ER membrane marker Sec61-

YFP (Fig. 5). Thus, the cytoplasmic Nup foci induced by Nup170C overproduction are either associated

with or close to the membranes containing the ER marker Sec61.

However, the location of Nups that are part of NPC structures facing the nucleoplasm (e.g., Nup2 and

Nup1) was not affected by the Nup170C overproduction (Fig. 4 and not depicted). Thus, overproduction

of Nup170C affects NPC tethering of Nup1 and Nup2 differently than a nup170Δ deletion, which was

reported to cause a partial mislocalization of these nucleoplasmic Nups from NPCs (Kenna et al., 1996).

Next, we examined the cells expressing the toxic Nup170C by transmission EM. This analysis revealed

electron-dense structures in the cytoplasm that resembled NPCs present in the NE (Fig. S2). However,

the diameter of these electron-dense cytoplasmic structures (87 ± 9 nm) was slightly smaller than the

size of normal NPCs embedded in the NE (97 ± 11 nm). Thus, it remains open whether the Nup-

containing cytoplasmic foci induced by Nup170C overexpression and seen in the fluorescence microscope

correspond to these electron-dense structures seen in EM.

In conclusion, the EM structure of Nup170 revealed that it is composed of two distinct structural entities,

which is consistent with the predicted domain separation into an N-terminal β-propeller and a C-

terminal α-solenoid. These domains fulfill different functions: the C-terminal part anchors Nup170 to the

nuclear pore, and the N terminus is responsible for recruiting and/or retaining certain Nups at the NPCs.

Moreover, the overexpression of the Nup170 C-terminal domain generated a toxic phenotype in nup170Δ

but not NUP170 cells, which caused a subset of Nups to mislocalize into cytoplasmic foci. In addition,

Nup170C overexpression induced nuclear accumulation of poly(A)  RNA in a significant number of

cells, which was not seen in nup170Δ cells (Fig. S3). Until now, such an effect of a toxic mutant Nup,

which is not seen by its full-length nonessential counterpart, has not been observed. Among the

mislocalized Nups were Nups predicted to form the NPC scaffold (Nup188), transmembrane Nups

(Pom152 and Pom34), and Nups from the cytoplasmic periphery (Nup159 and Nup82). However, no

segregation into cytoplasmic foci was observed for Nups located at the nuclear side of the NPC (Nup1

and Nup2). This finding could implicate that the N terminus of Nup170 (or Nup157) may tether

cytoplasmically oriented Nups to the C terminus of Nup170 molecules within the context of the higher

order NPC structure.

Under conditions of Nup170C overexpression, the cytoplasmic foci containing GFP-labeled Nups (e.g.,

Nup188-GFP) sometimes aligned like pearls on a string protruding from the NE. It is possible that the

Nup170C domain in concert with other Nups (e.g., Pom34, Pom152, and Nup188) triggers distinct steps

in NPC biogenesis that could occur outside of the NE, perhaps at the ER. This possibility is consistent

with identified interactions between Pom152 and Nup170 (Alber et al., 2007) and Nup188 and Pom152

(Aitchison et al., 1995). Assuming that these Nup assembly intermediates are first formed outside of the

NE, the Nup170N domain may help to target these intermediates to the sites within the nuclear

membrane, where the new NPCs form. An evolutionary conserved subcomplex containing

Nup170/Nup155 and especially the Nup170-Nup53 assembly has been shown to be crucial for NPC and

+
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NE assembly (Hawryluk-Gara et al., 2008). We have found a two-hybrid interaction between the N-

terminal domain of Nup170 and Nup53 (unpublished data). Thus, it is possible that upon Nup170C

overexpression in yeast, the subcomplex containing Nup170 and Nup53 may not be correctly assembled,

and, as a consequence, NPC biogenesis is inhibited. Future studies will be necessary to reveal the

composition and exact subcellular location of the observed putative NPC intermediates in the cytoplasm

and unravel the precise role of the Nup170 N and C domains in orchestrating both temporally and

spatially the complicated steps of NPC biogenesis.

Materials and methods

Yeast strains and yeast genetic methods

The plasmids used in this study are shown in Table S1. The yeast S. cerevisiae strains used in this study

are listed in Table S2. For the yeast two-hybrid interaction analysis, the plasmid expressing the N domain

of Nup170, fused to the GAL4 DNA–binding domain, and the C-domain of Nup170, fused to the GAL4

activation domain, were cotransformed into the reporter strain PJ69-4A (James et al., 1996). The

interaction was documented by spotting representative transformants in 10-fold serial dilution steps on

synthetic dextrose complete (SDC)–Trp-Leu (plating efficiency) and SDC-Trp-Leu-Ade (two-hybrid

interaction) plates. C-terminal tagging at the genomic locus was performed as described previously

(Longtine et al., 1998; Puig et al., 2001; Janke et al., 2004). Preparation of media, yeast transformation,

and genetic manipulations were performed according to established procedures. Analysis of poly(A)

RNA export was performed at 30°C by in situ hybridization using Cy3-labeled oligo (dT) probes as

previously described (Doye et al., 1994).

Affinity purification

Protein purification was performed in a buffer containing 20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 50

mM KOAc, 2 mM Mg(OAc) , and 0.15% NP-40. The full-length Nup170 chromosomally tagged with a

protein A–TEV-Flag construct was purified via affinity purification and size exclusion chromatography.

GST-tagged Nup170C (aa 755–1,502) was expressed in E. coli and purified to homogeneity by GST

affinity purification, TEV cleavage, and ion exchange chromatography. For the TEV cleavage, during the

affinity purification of the protein A–tagged C-domain of Nup170, DTT was added to a final

concentration of 1 mM to the aforementioned buffer. The samples were separated on NuPAGE SDS 4–

12% gradient polyacrylamide gels (Invitrogen) and stained with colloidal Coomassie (Sigma-Aldrich).

For EM, an additional anion exchange chromatography of the C domain of Nup170 was performed.

Fluorescence microscopy

Cells were grown to early log phase at 30°C in synthetic raffinose complete (SRC)–Leu and then shifted

to 2% galactose for 10 h. Then they were examined by fluorescence microscopy using a microscope

(Imager Z1; Carl Zeiss, Inc.) equipped with a 100×/63× NA 1.4 Plan-Apochromat oil immersion lens.

Pictures were acquired with a camera (AxioCam MRm; Carl Zeiss, Inc.) and AxioVision 4.3 software

(Carl Zeiss, Inc.).

EM, image processing, and fold assignment

Thin-section EM was performed as previously described (Doye et al., 1994). Cells were grown to early log

phase at 30°C in SRC-Leu and then shifted to 2% galactose for 10 h. Negative staining for single-particle

EM was performed as described previously (Lutzmann et al., 2005). Micrographs were recorded with a

field emission gun microscope (CM-200; Phillips) under low dose conditions on a 2K × 2K charge-

coupled device camera (TVIPS F224; Tietz) at 200 kV with a nominal magnification of 38,000×

(calibrated pixel size, 3.76 Å/pixel) and 50,000×, respectively (calibrated pixel size, 2.86 Å/pixel). For

image processing, a total of 4,000 (for Nup170) and 1,500 (for Nup170C) particle images were selected

and boxed using the Medical Research Council image-processing package (Crowther et al., 1996) or the

SPIDER software package (Frank et al., 1996). All subsequent image processing was performed in

Imagic V (Image Science Software GmbH; van Heel et al., 1996). Alignment, iterative refinement of

class averages, and the calculation of the 3D maps followed previously described procedures (Lutzmann

et al., 2005).
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Fold assignment of Nup170 was performed as previously described (Devos et al., 2006). Secondary

structure prediction of Nup170 was performed using psipred (McGuffin and Jones, 2003), and the 3D

model was built by modeller-8 (Sali and Blundell, 1993) from the hhsearch (Söding et al., 2005)

alignment.

Online supplemental material

Fig. S1 shows the protein expression levels of NUP170 constructs in the indicated yeast strains. Fig. S2

shows thin-section EM of Nup170C-overexpressing cells. Fig. S3 illustrates that overexpression of

Nup170C in nup170Δ cells induces an mRNA export defect. Tables S1 and S2 list all of the plasmids and

strains, respectively, used in this study. Video S1 displays the 3D EM structure of Nup170. Online

supplemental material is available at http://www.jcb.org/cgi/content/full/jcb.200810016/DC1.
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Electron m icroscopic single-particle analy sis of purified full-length Nup17 0 and Nup17 0C. (A)

Affinity -purified Nup17 0 was analy zed by  SDS-PAGE and Coomassie staining (left; contaminated by  FAS and

indicated by  an asterisk) and by  EM (right). A charge-coupled dev ice image overv iew electron micrograph of the
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negatively  stained Nup17 0 is shown. (B) Class averages (top), corresponding reprojections of the final 3D model

(middle), and surface representations of Nup17 0 in equivalent orientations (bottom) are shown. (C) Modeling the

Nup17 0 sequence with its predicted β-strands (purple; residues 144 to 648) and α-helices (red; residues 890 to

1 ,460; loops bigger than 12 aa were omitted) according to Devos et al. (2006) into the 3D EM structure of the

Nup17 0. The β-propeller and α-solenoid were manually  fitted into the 3D shape of the crescent-shaped Nup17 0

molecule. The dashed line indicates a putative unstructured region between the β-propeller and α-solenoid

domains, ∼240 aa in length, for which a secondary  structural prediction was not obtained. (D) SDS-PAGE of the

purified C-terminal domain of Nup17 0 (left) and comparison of representative class averages of Nup17 0C with a

projection of Nup17 0 full-length at the same scale (right). Bars: (B) 4.5 nm (D) 2.9 nm.

Figure 2.

Overexpression of GAL NUP170C causes a toxic phenoty pe in nup170Δ cells. (A) Full-length Nup17 0

and the indicated tagged Nup17 0C and Nup17 0N domains were overexpressed in either wild-ty pe (NUP170) or

nup170Δ  cells. (B) The indicated Nup157 N, Nup157 C, and Nup17 0C domains were overexpressed under the

control of the GAL promoter in nup170Δ  cells. (C) The indicated Nup157 C or Nup17 0C domains were

overexpressed under the control of the GAL promoter in nup157Δ  cells. (D) Nup17 0C was expressed either

under the control of the GAL promoter or the NOP1  promoter in nup170Δ  cells. Cells were spotted in 10-fold

serial dilutions on glucose-containing plates (noninducing) and galactose-containing plates (inducing). They

were incubated at 30°C for 2 (glucose) and 4 d (galactose). ProtA, protein A.

Figure 3.
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Nup17 0C and Nup17 0N phy sically  and functionally  interact with each other. (A) Nup17 0C tethers

Nup17 0N to the NE. The indicated GFP-tagged Nup17 0 domains were expressed under the control of the NOP1

promoter in the specified strains and analy zed by  fluorescence microscopy . Cells are also shown by  Nomarski

optics. (B) Nup17 0C and Nup17 0N show a two-hy brid interaction. The indicated constructs, fused to either the

GAL4 DNA–binding domain (G4BD) or the GAL4 activation domain (G4AD), were expressed into a reporter y east

strain. Cells were spotted in 10-fold serial dilution steps onto SDC-Trp-Leu (for plating efficiency ) or SDC-Trp-

Leu-Ade (for two-hy brid interaction) plates and incubated at 30°C for 3 d and 4 d, respectively . (C) Affinity -

purified Nup17 0C coenriched Nup17 0N. Protein A (ProtA)–tagged Nup17 0C and protein A–tagged Nup82 were

affinity  purified from a y east strain coexpressing my c-tagged Nup17 0N. The TEV-eluates were analy zed by  SDS-

PAGE and Coomassie staining (top) and Western blotting (bottom) using anti-my c antibodies to detect Nup17 0N.

Coenriched Nsp1  and Nup159 are indicated on the right. The asterisks label the purified bait proteins, and the dot

marks the TEV protease. Bar, 5 µm.

Figure 4.
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Overproduction of Nup17 0C induces a cy toplasm ic m islocalization of Nups. Nup82, Nup188, Pom34,

and Nup2, all labeled with GFP at the C terminus by  chromosomal integration, were expressed in the wild-ty pe,

nup170Δ , and GAL NUP170C-overproducing nup170Δ  strains. Cells were grown in a raffinose-containing (SRC-

Leu) medium to an OD  of 0.7  before shift to a galactose-containing (sy nthetic galactose complete–Leu)

medium for 10 h. Cells were inspected in the fluorescence microscope and v iewed by  Nomarski optics. Counting

revealed that 28% of the cells showed mislocalized Nup188-GFP in cy toplasmic foci upon Nup17 0C

overexpression, but only  5% exhibited this phenoty pe when GAL NUP170C was not induced. 17 % of the cells

showed Pom34-GFP mislocalized in a cy toplasmic spot upon GAL NUP170C induction versus 2% when GAL

NUP170C was not induced. Bar, 2.5 µm.

Figure 5.
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Cy toplasm ic spots containing Nup188 and Nup159 colocalize with the ER m arker Sec61 in GAL

NUP170C-overproducing cells. (A and B) Cells expressing Nup188-CFP (A) and Nup159-CFP (B) in a nup170Δ

strain overproducing GAL NUP170C were analy zed by  fluorescence microscopy . Moreover, these strains

coexpressed the ER marker Sec61-Y FP. Fluorescence microscopic, merged, and Nomarski pictures of

representative cells are shown. Bars, 5 µm.
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