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Abstract.

In its first part, this contribution reviews shortly the application of neural
network methods to medical problems and characterizes its advantages and
problems in the context of the medical background. Successful application
examples show that human diagnostic capabilities are significantly worse
than the neural diagnostic systems. Then, paradigm of neural networks is
shortly introduced and the main problems of medical data base and the basic
approaches for training and testing a network by medical data are described.
Additionally, the problem of interfacing the network and its result is given
and the neuro-fuzzy approach is presented. Finally, as case study of neural
rule based diagnosis septic shock diagnosis is described, on one hand by a
growing neural network and on the other hand by a rule based system.
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1. Introduction

Almost all the physicians are confronted during their formation by the task of
learning to diagnose. Here, they have to solve the problem of deducing certain
diseases or formulating a treatment based on more or less specified observations
and knowledge. Certainly, there is the standard knowledge of seminars, courses
and books, but on one hand medical knowledge outdates quickly and on the other
hand this does not replace own experience. For this task, certain basic difficulties
have to be taken into account:

• The basis for a valid diagnosis, a sufficient number of experienced cases, is
reached only in the middle of a physician’s career and is therefore not yet pre-
sent at the end of the academic formation.

• This is especially true for rare or new diseases where also experienced physi-
cians are in the same situation as newcomers.

• Principally, humans do not resemble statistic computers but pattern recogni-
tion systems. Humans can recognize patterns or objects very easily but fail
when probabilities have to be assigned to observations.
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These principal difficulties are not widely known by physicians. Also studies
who revealed that about 50% of the diagnoses are wrong do not impede the self-
conscience of some physicians. It is not by chance that the disease AIDS which
manifests by a myriad of infections and cancer states was not discovered directly
by treating physicians but by statistical people observing the improbable density
of rare cancer cases at the U.S. west coast.

An important solution for the described problem lies in the systematic applica-
tion of statistical instruments. The good availability of computers ameliorate the
possibilities of statistically inexperienced physicians to apply the benefits of such
a kind of diagnosis:

• Also physicians in the learning phase with less experience can obtain a reli-
able diagnosis using the collected data of experienced colleagues.

• Even in the case of rare diseases, e.g. septic shock, it is possible to get a good
diagnosis if they use the experience of world-wide networked colleagues.

• New, unknown diseases can be systematically documented even if this in-
duces complex computations which are not known to the treating physician.

• Also in the treatment of standard diseases a critical statistical discussion for
the use of  operation methods or medical therapies may introduce doubts in
the physicians own, preferred methods as it is propagated by the ideas of evi-
dence based medicine EBM[16].

A classical, early study [8] in the year 1971 showed these basic facts in the
medical area. At the university clinic of Leeds (UK) 472 patients with acute ab-
dominal pain where examined and diagnosed. With simple, probability-based
methods (Bayes classification) the diagnostic decision probabilities were com-
puted based on a data base of 600 patients. Additionally, a second set of prob-
abilities were computed by using a synthetic data base of patients build on the
interviews of experts and questionnaire sheets about ‘ typical’  symptoms.

Then, the 472 cases were diagnosed by an expert round of 3 experienced and 3
young physicians. The results of this experiment was as follows:

• Best human diagnosis (most experienced  physician): 79.7%
• Computer with expert data base: 82.2%
• Computer with 600 patient data: 91.1%

The conclusion is clear: humans can not ad hoc analyze complex data without
errors. Can neural networks help in this situation?

2. The Prognostic Capabilities of Neural Networks

Let us shortly review the prognostic capabilities of adaptive systems like those of
neural networks. There is a long list of successful applications of neural networks
in medicine, e.g. [13],[27]. Examples are given below:
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• Myocardial infarction [1]
From 356 patients of a heart intensive care unit 120 suffered from acute myo-
cardial infarction. Based on these data, Baxt (1990) trained a network and ob-
tained a sensitivity of 92% and a specificity of 96% for heart attack prediction.

• back pain [3]
145 responses of a questionnaire represented the input, 4 possible diagnosis re-
sults were the output (simple lower back pain SLBP, root pain RP, spinal pain
SP, abnormal illness behavior AIB). After training with 50 example cases the
following correct percentage for 50 test cases were observed (Table 1):

Table 1   Diagnostic correctness of back pain.

Method SLBP % RP % SP % AIB % average %
Network 63 90 87 95 83
neuro-surgeon 96 92 60 80 82
orthoped. surg. 88 88 80 80 84
common phys. 76 92 64 92 81

For this application, the network has (in the average) roughly the same success
as the human, experienced experts. Nevertheless, for the non-critical case of
simple lower back pain the network was worse than the physicians; for the im-
portant case of spinal symptoms where a quick intervention is necessary the
network was better than the experts.

• Sur vival probability after severe injury [21]
For 3 input variables (Revised Trauma Score RTS, Injury Severity Score ISS,
age) and 2 output variables (life, death) a network was trained with 4800 ex-
amples. Compared to the traditional score method TRISS and a variant AS-
COT which separate special risk groups before scoring, resulted in the fol-
lowing diagnostic scores for juvenile patients (Table 2):

Table 2 Diagnostic success for severe injury of juvenile patients

Diagnose TRISS ASCOT NNet

sensitivity % 83,3 80,6 90,3

specificity % 97,2 97,5 97,5

The significant higher sensitivity of the neural network can be deduced to the
superiority of the adaptive approach of the neural net compared to the fixed
linear weighting of the scores (as e.g. APACHE). A linear weighting corre-
sponds to only one layer of linear neurons (e.g. the output layer); the categori-
cal score input corresponds to fixed nonlinear neurons (e.g. the hidden units).

Beside the high number of successful medical applications (MedLine [18] listed
about 1700 papers for the keywords “artificial neural network”  in spring 2001)
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there are many reviews for the use of artificial neural networks in medicine, see
e.g. [9],[24],[26]. In this contribution, only the basic principles of neural networks
will be presented in the next section in order to set the base for applications like
the one in section 4.

3. Basic Principles of Neural Networks

Let us start by modelling the artificial neurons. Like in nature neural networks
consist of many small units, the formal neurons. They are interconnected and work
together. Each neuron has several inputs and one output only. In  Fig. 1 a biologi-
cal neuron and an artificial neuron are shown.
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Fig. 1 A biological neuron and an artificial one.

Our formal neuron has inputs xi, each one weighted by a weight factor wi. We
model all of the neural inputs from the same neighbour neuron by just one
weighted input. Typically, the activation z is modelled by a weighted sum of the n
inputs

z = i

n
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The output activity y is a function S of the activation, generally a nonlinear one.
  Nonlinear predictions are provided by nonlinear neurons, i.e. neurons with a

nonlinear function Si(z) for the i-th neuron, e.g.  a radial basis function (RBF)
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This bell-shaped function provides a local sensitivity of each neuron i for an area
of width σi centred at point ci.

If we arrange several neurons in parallel and then in different layers, we get a
mapping from input to output ("feedforward network"). Given a certain task, what
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kind of network should we choose? To resolve this question, we should know:
what is in general the power of a network? For a two layer network (Fig. 2) con-
taining at least one nonlinear layer we know that we can approximate any function
as close as desired. For a more precise notation of this property, see e.g. [15].

1st layer        2nd layer
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y2

yn

f1

f2

Fig. 2  A two-layer network

For our purpose, we have to decide whether we want to solve a classification or
prediction task, based on a number of known cases, or if we want to make a kind
of data mining approach, discovering new proportions of the data. In the first case
we should take a multi-layer decision network with a learning algorithm based on
the classification probability, not on a distance measure like the mean square error
of approximation. The classification might be done either by a multi-layer-
perceptron MLP or a radial basis function network RBF, see [12]. In either case,
the network is trained to do a certain classification job by presenting the patient
data and the correct classification to the network. It is the task of the network to
predict the class of an unknown patient from the presented data, giving rise to
appropriate treatments.

Preprocessing the data
Very important for medical data analysis, especially for retrospective evaluations,
is the preprocessing of the data, see [23]. The problems are listed below.

• The data set in single studies is often too small to produce reliable results.
• Often, medical data material is very inhomogeneous, coming from multivari-

ate time series with irregularly measured time stamps.
• Typing errors are detected by checking bounds of the variables.
• A lot of variables shows a high number of missing values caused by faults or

simply by seldom measurements.
• Feature var iables should be selected to avoid the so called "curse of dimen-

sionality"

For our task we heavily rely on the size of the data and their diagnostic quality. If
the data contains too much inaccurate or missing entries we have no chance of
building up a reliable system even if it is principally possible.



6      

Training and Testing
In general, the networks have to be trained in order to get the parameters set for a
proper function. We distinguish between two modes: the supervised training
where we add to each training sample input (patient data) also the desired network
output information (e.g. the correct classification), and the unsupervised training
which is used to extract statistical information from the samples. The latter is often
used for signal preprocessing, e.g. PCA and ICA, see [12].

How do we get the parameters of the chosen network, e.g.  σi  and ck of eq.(2) ?
1 Changing the parameters at fixed network: The parameters are updated such
that an objective function R(w) is optimised. 2 Growing networks with fixed
parameters: Starting with one neuron, for each data sample which causes a high
error in the prediction a new neuron is added to the network. All parameters are
set such that the error is decreased.

 It is well known that the performance of learning systems on the training data
often does not reflect the performance on unknown data. This is due to the fact
that the system often adapts well on training to the particularities of the training
data. Therefore, the training data should be randomly chosen from all available
data. It should represent the typical data properties, e.g. the probability distribu-
tion. If you have initially a bias in the training data you will encounter perform-
ance problems for the test data later.

In order to test the real generalization abilities of a network to unknown data, it
must be tested by classified, but yet unknown data, the test data that should not
contain samples coming from patients of the training data. We have to face the
fact that patient data is very individual and it is difficult to generalize from one
patient to another. Ignoring this fact would pretend better results than a real sys-
tem could practically achieve.

Inter facing the Results
One of the most important questions for diagnosis is the design of the user inter-
face. Why?

 Neural networks are seldom designed to explain what they have learned. The
approach of using the experience of the physician and explaining the diagnosis by
proper medical terms is crucial for the question whether a diagnostic system is
used or ignored. In general, all diagnostic systems, even the most sophisticated
ones, are worthless if they are not used. So, the importance of acquiring the neces-
sary knowledge and presenting the results in a human understandable, easy way
can not be overestimated.

Now, with the appearance of fuzzy systems which use vague, human-like
categories [20] the situation for knowledge-based diagnosis has changed. Based
on the well-known mechanisms of learning in RBF networks, a neuro-fuzzy inter-
face can be used for the input and output of neural systems. The intuitive and
instructive interface is useful in medical applications, using the notation and habits
of physicians and other medically trained people. In Fig. 3 this concept is visual-
ized.



      7

   Data parameters

 rules,  training data
 terms

     physician             learning algorithm

Screen
masks

neural
net

Fig. 3 Interactive transfer of vague knowledge

Here, the user interface must use the typical human properties and formulate the
diagnosis by the vague, inexact language of physicians. The following notational
habits of physicians for variables and possible outcomes have to be reflected by
the user interface:

♦ Exact notation,   e.g. blood sugar = 120 mg/dl.

♦ Semi-quantitative notation,    e.g. 120 to 130  mg/dl   or  ++ , + , 0 , - , -- .
♦ Qualitative, categorical notation,    e.g. test result = red.

To support these notations, we might use the idea of fuzzy terms, called
“vague terms” , described by membership functions. As example, in Fig. 4 the
assignment of the vague linguistic terms of the medical variable SGOT to the
vague variable x (concentration IE/l) is shown. This results in a vague set of
membership functions showed in Fig. 4. For each function, the set { x | µ(x)=1}  is
called the core, whereas the whole set { x | µ(x)>0}  is called the support of func-
tion µ. To each term of a vague set, we have to attach a name or a label.

µ (x )
       l ow norm al     slightly elevated    hi ghl y  el ev ated
1.0

0.5

0.0
0 10 20 30 40 50

Fig. 4 The vague set of the linguistic variable SGOT

For the sake of an easy, robust interface for network initialization purposes (in-
formation stream from left to right in Fig. 3) it is wise not to assume any knowl-
edge about appropriate membership functions by the user which is certainly true
for most of the physicians. Instead, let us use the most simple membership func-
tion which is in coherence with the medical expert intuition: a simple trapezoidal
bell shaped function which is directly assigned to the Radial Basis Function of a
RBF neuron.

 In conclusion, by using a trapezoidal function as standard membership func-
tion we can easily satisfy all the demands of the medical interface. As free pa-
rameters the lower and upper core limits [min,max] are chosen as the medical
range limits while the ramps are assumed standard. An application of this kind of
rule based system is presented in section 4.2.
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Fig. 5 Mapping the human association to RBF output

In [7] a prototype implementation Analyst1 [16] of such an interface is de-
scribed.

4. Case Study: Diagnosing Septic Shock Patients

In intensive care units (ICUs) there is one event which only rarely occurs but
which indicates a very critical condition of the patient: the septic shock. For pa-
tients being in this condition the survival rate dramatically drops down to 40-50%
which is not acceptable.

Up to now, there is neither a successful clinical therapy to deal with this prob-
lem nor are there reliable early warning criteria to avoid such a situation. The
event of sepsis and septic shock is rare and therefore statistically not well repre-
sented. Due to this fact, neither physicians can develop well grounded experience
in this subject nor a statistical basis for this does exist. Therefore, the diagnosis of
septic shock is still made too late, because at present there are no adequate tools to
predict the progression of sepsis to septic shock. No diagnosis of septic shock can
be made before organ dysfunction is manifest.

By the analysis of septic shock data we want to change this situation.

The Data
In our case, the epidemiology of 656 intensive care unit patients was elaborated in
a study made between November 1995 and December 1997 at the clinic of the
J.W.Goethe-University, Frankfurt am Main [28]. The data of this study and an-
other study made in the same clinic between November 1993 and November 1995
is the basis of our work.

We set up a list of 140 variables, including readings (temperature, blood pres-
sure, …), drugs (dobutrex, dobutamin, …) and therapy (diabetes, liver cirrhosis,
…). Our data base consists of 874 patients. 70 patients of all had a septic shock.
27 of the septic shock patients and 69 of all the patients deceased.
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 With only a small amount of data in each study we had to fuse the two studies
to one. Additionally, the variables had to be resampled in order to fit into a com-
mon time frame. For our data, not the typing errors but the missing values was the
main problem.

The data base contains about 140 variables of metric nature, only partially us-
able. In our case, for analysis the physicians gave us recommendations which
variables are the most important ones for a classification, based on their experi-
ence. The chosen variable set V is composed of n=16 variables: pO2 (arterial)
[mmHg], pCO2 (arterial) [mmHg], pH, leukocytes [1000/µl], thromboplastin time
(TPZ) [%], thrombocytes [1000/µl], lactate [mg/dl], creatinin [mg/dl], heart fre-
quency [1/min], volume of urine [ml/24h], systolic blood pressure [mmHg], fre-
quency of artificial respiratory [1/min], inspiratorical O2-concentration [%], medi-
cation with antithrombine III AT3 [%], medication with dopamine and dobutrex
[µg/(kg⋅min)].

4.1 Diagnosis by growing neural networks

The neural network chosen for our classification task is a modified version of the
supervised growing neural gas (abbr. SGNG, see [10]). Compared to the classical
multilayer perceptron trained with backpropagation (see [12]) which has reached a
wide public, this network achieved similar results on classification tasks but con-
verges faster, see [14]. The algorithm with our improvements and additional
benchmark results are noted in detail in [11]. It is based on the idea of radial basis
functions. Its additional advantage is the ability to insert neurons within the
learning process to adapt its structure to the data.

In our case we had only 70 patients with the diagnosis “septic shock” . Our clas-
sification is based on 2068 measurement vectors (16-dimensional samples) from
variable set V taken from the 70 septic shock patients. 348 samples were deleted
because of too many missing values within the sample. With 75% of the 1720
remaining samples the SGNG was trained and with 25% samples from completely
other patients than in the training set it was tested. The variables were normalized
(mean 0, standard deviation 1) for analysis.

The network chosen was the one with the lowest error on the smoothed test er-
ror function. Three repetitions of the complete learning process with different,
randomly selected divisions of the data were made. The results are presented in
Table 3.

Table 3 Correct classifications, sensitivity, specificity with standard devia-
tion, minimum and maximum in % from three repetitions.

measure mean
value

standard
deviation

minimum maxi-
mum

correct
classification

67.84 6.96 61.17 75.05

sensitivity 24.94 4.85 19.38 28.30
specificity 91.61 2.53 89.74 94.49
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To achieve a generally applicable result ten repetitions would be better, but
here it is already clear: with the low number of data samples the results can only
have prototypical character, even with more cleverly devised benchmark strate-
gies.

On average we have an alarm rate (= 1 − specificity) of 8.39% for survived pa-
tients showing also a critical state and a detection of about 1 out of 4 critical ill-
ness states. For such a complex problem it is a not too bad, but clearly no excellent
result. An explanation for this low number is grounded in the different, individual
measurements of each patient.

4.2 Diagnosis by rule based networks

Results of classification procedures could provide a helpful tool for medical di-
agnosis. Nevertheless, in practice physicians are highly trained and skilled people
who do not accept the diagnosis of an unknown machine (black box) in their rou-
tine. For real applications, the diagnosis machine should be become transparent,
i.e. the diagnosis should explain the reasons for classification. Whereas the expla-
nation component is obvious in classical symbolic expert system tools, neural
network tools hardly explain their decisions. This is also true for the SGNG net-
work used in the previous section.

Therefore, as important alternative in this section we consider a classification
by learning classification rules which can be inspected by the physician. The de-
tails of the network structure and the learning algorithm can be found in [5],[19].

The result of the training procedure are rules of the form (belonging to the core
or support rectangle)

if variable 1 in (–∞, 50) and if variable 2 in (20,40)
   and if variable 3 in (–∞,∞) then class l  (3)

in addition with a classification. Here, variable 3 could be omitted.

Now we present the results of the rule generation process with our previously
introduced septic shock data set. The data set is 16-dimensional. A maximum of 6
variables for every sample was allowed to be missing. The missing values were
replaced by random data from normal distributions similar to the original distribu-
tions of the variables. So it was assured that the algorithm can not learn a biased
result due to biased replacements, e.g. class-dependent means. We demand a
minimum of 10 out of 17 variables measured for each sample, so there remained
1677 samples out of 2068 for analysis.

The data we used in 5 complete training sessions – each one with a different
randomly chosen training data set – was in mean coming from class 1 with a per-
centage of 72.10% and from class 2 with a percentage of 27.91%. In the mean
4.00 epochs were needed (with standard deviation 1.73, minimum 3 and maximum
7). Test data was taken from 35 randomly chosen patients for every training ses-
sion, containing no data sample of the 35 patients in the training data set. In Table
4 the classification results are presented.
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Table 4  Mean, standard deviation, minimum and maximum of correct classifica-
tions and not classifiable data samples of the test data set. In %.

mean
standard

 deviation minimum maximum

cor rect classifications 68.42 8.79 52.92 74.74
not classified 0.10 0.22 0.00 0.48

Average specificity ("deceased classified / all deceased") was 88 % and average
sensitivity ("survived classified / all survived") was 18.15 %. The classification
result is not satisfying, although similar to the results in section 4.1 but with the
benefit of explaining rules and less training epochs. Deceased patients were not
detected very well. Reasons for this can be the very individual behavior of the
patients and the data quality (irregularity of measurements, missing values). In this
way it seems not possible to classify all the patients correctly, but it could be that
in some areas of the data space the results are better (local rules). In the mean
22.80 rules were generated for the class survived and 17.80 rules were generated
for class deceased.

5. Discussion and Outlook

After a short introduction and review of existing medical applications, the typical
problems in analyzing medical data were presented and discussed.

In general, results of a patient classification or prediction task are true only with
a certain probability. Therefore, any prognostic system can not predict always the
correct future state but may just give early warnings for the treating physician.
These warnings should constitute an additional source of information; the back-
ward conclusion that, if there is no warning there is also no problems, is not true
and should be avoided.

Two of the most typical and important neural network approaches were pre-
sented: the black-box and the neuro-fuzzy rule based system approach. The first
approach for medical diagnosis by neural network is the black-box approach: A
network is chosen and trained with examples of all classes. After successful
training, the system is able to diagnose the unknown cases and to make predic-
tions. The advantage of this approach is the adaptation of all parameters of the
system for a (hopefully) best prediction performance.

Another diagnostic approach by neural networks is adaptive rule generation. By
this, we can explain the class boundaries in the data and at the same time find out
the necessary variables for a rule of the prediction system, see eq.(3). By using a
special approach of rectangular basis networks we achieved approximately the
same classification results as by the growing neural gas. Additionally, the diagno-
sis was explained by a set of explicitly stated medical rules.

One of the unresolved questions not only in this contribution is the application
of the diagnostic results. Who should apply them when? Although a good test of
the network provides the statistical means for the evaluation of the prediction
performance, in clinical research this is not sufficient. A widely accepted proce-
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dure is a randomized double-blind study. Therefore, in order to make a prediction
or classification system acceptable and usable in the medical world, after creating
a successful neural network diagnosis system or deducing good rules a new clini-
cal trial has to be conceived and performed with the final network state. Only after
such an controlled study the results should be used, eventually taking the classifi-
cation base and feasibility of such a system into account.

Even when the clinical trial was successful, you will encounter a problem: the
problem of ignorance. As long as physicians can come along with their clinical
routine in treating patients, they will do it. Nowadays, nearly for each disease
there exist an international renowned standard procedure, but most physicians will
not use it. Why? First, they have to know it and second, most physicians rely on
their own expertise. To overcome this, one have to include diagnostic expertise
into the clinical standard software. Here, clinical information systems with the
possibility of plug-in software are very rare, but we are on the way. Future ad-
ministrative necessities for complete input of patient data (e.g. TISS score) will
also enhance the possibility for automatic diagnosis by such paradigms as neural
networks.
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