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Operations research methods in compiler backends

Daniel Kästner∗†and Reinhard Wilhelm‡

Abstract. Operations research can be defined as the theory of nu-
merically solving decision problems. In this context, dealing with op-
timization problems is a central issue. Code generation is performed
by the backend phase of a compiler, a program which transforms the
source code of an application into optimized machine code. Basically,
code generation is an optimization problem, which can be modelled in
a way similar to typical problems in the area of operations research.
In this article, that similarity is demonstrated by opposing integer lin-
ear programming models for problems of the operations research and of
code generation. The time frame for solving the generated integer linear
programs (ILPs) as a part of the compilation process is small. As a
consequence, using well-structured ILP-formulations and ILP-based ap-
proximations is necessary. The second part of the paper will give a brief
survey on guidelines and techniques for both issues.

Sažetak. Operacijska istraživanja mogu se definirati kao teorija o
numeričkom rješavanju problema odlučivanja. U tom kontekstu, najveća
pažnja posvećuje se problemima optimizacije. Prevodilac (compiler) je
program koji pretvara izvorni kod neke aplikacije u optimizirani strojni
kod. Pritom se samo generiranje koda obavlja u drugoj (backend) fazi
prevod̄enja. Generiranje koda zapravo je jedan problem optimizacije,
koji se može modelirati slično kao i tipični problemi iz područja opera-
cijskih istraživanja. U ovom članku, ta sličnost se prikazuje tako što
se uspored̄uju modeli cjelobrojnog linearnog programiranja za probleme
iz operacijskih istraživanja s modelima za problem generiranja koda.
Raspoloživo vrijeme za rješavanje generiranih cjelobrojnih linearnih pro-
grama (CLP-a) unutar procesa prevod̄enja je vrlo kratko. Zato se nužno
moramo prikloniti jednom od sljedeća dva pristupa: korǐstenje dobro
strukturiranih formulacija CLP-a, odnosno prelazak na aproksimacije
zasnovane na CLP-u. Drugi dio članka daje kratak pregled smjernica i
tehnika za oba pristupa.
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1. Introduction

In the field of Operations Research, optimization problems play an important role.
Since the problem of code generation basically is an optimization problem, it is not
surprising that there are similarities between the models and solution techniques
which are used. An important topic of Operations Research is production planning.
Two different directions can be distinguished: aggregate production planning for
product types and production scheduling. In this paper, we will focus on production
scheduling which deals with operational decisions [16]. The analogy between these
problems and the problem of code generation is pointed out by opposing the job
shop problem to the problems of instruction scheduling and register assignment.
Traditionally, instruction scheduling and register allocation are performed in two
largely independent phases with each subproblem being solved by using graph-based
heuristics. However, since the two problems are in fact interdependent, this phase
decoupling can lead to inefficient code (phase ordering problem). Formulations
based on integer linear programming (ILP) offer the possibility of integrating in-
struction scheduling and register assignment in a homogeneous problem description
and of solving them together. Thus the technique of ILP is a universal approach
suited for optimization problems in operations research as well as in the time sen-
sitive field of compiler construction.

This article is structured as follows: in Section 2., the job shop and flow shop
problems are defined. The task of compiling is detailed in Section 3.; here, the focus
is on the code generation part of the compilation process. The different subprob-
lems of code generation are presented and the phase ordering problem is explained.
The next two sections deal with different approaches for formulations of integer lin-
ear programs. Section 4. concentrates on time-based approaches, where the choice
of the decision variables is based on the time the modelled event is assigned to.
Time-based formulations for the flow shop and the instruction scheduling prob-
lems are opposed. In Section 5., order-based formulations for the job shop and the
instruction scheduling problem are presented. In order-based approaches, the de-
cision variables reflect the ordering of the instructions or tasks which have to be
calculated. Section 6. explains how the ILP-formulations for instruction scheduling
presented in Sec. 4. and Sec. 5. can be extended to integrate the problem of regis-
ter assignment. Approximation algorithms for the order-based ILP formulation for
instruction scheduling and register assignment are presented in Sec. 7. and Sec. 8.
concludes.

2. Job shop scheduling

2.1. Definition

For the definition of the job shop problem, we follow the definitions given in [4]. A
job shop consists of a set of different machines that perform tasks making up a set
of jobs. For each job, it is known how long its tasks take and in which order they
have to be processed on each machine1. So, a job is composed of an ordered list
of tasks; each task is characterized by the machine on which it has to be executed

1This ordering is called the machine sequence of the job.
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and by the required processing time. Three constraints on jobs and machines have
to be satisfied:

• there are no precedence constraints among tasks of different jobs;

• tasks cannot be interrupted, and each machine can handle only one job at a
time;

• each job can be performed only on one machine at a time.

A frequently considered optimization goal for this problem is to find the job
sequences on the machines which minimize the maximum of the completion times
of all tasks, the so-called makespan. The flow shop problem is a special case of
the job shop problem. In a job shop, each job has its own machine sequence and
different jobs can have different machine sequences. In a flow shop, the machine
sequences of all jobs have to be identical.

2.2. Graphical representation

The machine sequences can be visualized in a graph in which the nodes represent the
tasks and directed edges denote the ordering of the tasks in a job [4, 5]. Additionally,
two virtual tasks t0 and tn+1 are introduced for the beginning and the end of the
processing.

The decision problem of the job shop scheduling problem can be described by
extending this machine sequence graph to the disjunctive graph [5]. A disjunctive
edge is an originally undirected edge between two tasks which have to be processed
on the same machine. Determining the processing order between these two tasks
on the appropriate machine corresponds to selecting one of two possible directions
for their disjunctive edge. Thus, the directed edges between tasks represent the
precedence constraints on the tasks of the same job, and the disjunctive edges are
added to ensure that each machine can handle at most one task at a time. The
directions of the disjunctive edges are not determined by the input data but are
subject to the scheduling process. A solution of the job shop scheduling problem is
calculated by fixing the directions for all disjunctive edges.

In order to integrate the processing times of the tasks into the disjunctive graph,
each node is marked with the processing time of the corresponding task. A feasible
solution is calculated by fixing the direction of all disjunctive edges so that the
resulting graph G is acyclic and the length of a longest weighted path between T0

and Tn+1 is minimal. Such a path is called a critical path. The length of a longest
path in G connecting nodes T0 and Ti is equal to the earliest possible starttime ti
of task Ti, ti = asap(Ti) (as soon as possible). Given an upper bound T of the
makespan and given a feasible (not necessarily optimal) schedule, an upper bound
of the latest possible starttime t′i = alap(Ti) (as late as possible) can be calculated.
This is done by inverting the directions of all edges and subtracting the length of
the longest path from tn+1 to ti from the upper bound of the makespan. Methods
to calculate these times in node- as well as edge-weighted graphs are the CPM- and
MPM-method [8]. The resulting time window for the start of each task is exploited
by many algorithms in order to increase efficiency [27, 13, 14].
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Consider the following example. Let three jobs J1, J2, J3 be given and let each
task be specified by a triple (p,m, j) where p denotes the processing time of the task,
m the number of the machine where it is executed and j the number of the job which
the task belongs to. The task characteristics are given in Table 1; the corresponding
disjunctive graph is shown in Fig. 1. There the dotted lines represent the precedence
constraints between the tasks of each job and the solid lines correspond to the
disjunctive edges. In Fig. 1, the tasks are numbered in increasing order of the jobs
so that each task has its own number, e.g. task 5 denotes the first task of job J2.
Task 0 is the virtual start task, task 10 represents the virtual end task.

Jobs/Tasks 1 2 3 4
J1 (5,1,1) (5,2,1) (6,3,1) (6,1,1)
J2 (15,1,2) (6,3,2)
J3 (9,3,3) (1,1,3) (7,2,3)

Table 1. Example job shop

Figure 1. Disjunctive graph for the job shop of Tab. 1

3. The process of compiling

Compilers for high-level programming languages are large, complex software sys-
tems. The task of a compiler is to transform an input program written in a certain
source language into a semantically equivalent program in another language, the
target language. This structure is illustrated in Fig. 2; there the source language is
C and the target language is assembler code of a modern standard-DSP, the Analog
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Devices ADSP-2106x ([1]).

Figure 2. The process of compiling

Assembler code is a human readable representation of executable machine code and
can easily be transformed into the latter form.

Conceptually, the process of compiling can be subdivided into an analysis phase,
the compiler frontend, and a synthesis phase, the compiler backend. In the analysis
phase, the syntactic structure and some of the semantic properties of the source
program, the so-called static semantics, are computed. The results of the analysis
phase comprise either messages about syntactic or semantic errors in the program
or an appropriate intermediate representation of the program. In this intermedi-
ate representation, the syntactic structure and the static semantic properties are
exposed. The synthesis phase takes the intermediate representation as input and
converts it into semantically equivalent target machine code.

The most important part of the compiler backend is the code generation phase
which consists itself of several subtasks:

Code selection: the selection of instruction sequences for the program’s constructs,

Register allocation: the determination of fast processor registers which should hold
values of program variables and intermediate results,

Instruction scheduling: the reordering of the produced instruction stream for better
exploitation of intraprocessor parallelism.

All tasks have high worst case complexity; register allocation and instruction
scheduling are NP-hard. Therefore, heuristics for these problems are generally
used.

For reasons of software complexity, a modular decomposition of code generation
into these tasks is advisable. However, this will often lead to the combination of
(locally) optimal or already nonoptimal solutions to even worse solutions as will be
described shortly.
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3.1. Code selection

Code selection is of different complexity for CISC and for RISC machines. A CISC
machine usually offers many different meaningful, equivalent instruction sequences
for a program, while this number is smaller for RISC machines. Code selection can
be executed by a tree parser [9, 26] or a bottom up rewrite system [11] generated
from an appropriate description of the target machine and its correspondance to
the IR. In the tree parsing case, the different possible translations correspond to
the different derivations of the IR according to the regular tree grammar describing
the code selector.

Instructions are associated with costs which in turn combine to costs for the
potential translations. A locally cheapest translation is usually selected.

3.2. Register allocation and assignment

The execution time of a program would profit if all values of live program variables
and live intermediate results, often called symbolic registers, could be kept in fast
processor registers. Liveness of a variable or result means that its current value
will potentially be needed later on. The number of simultaneously live symbolic
registers usually exceeds the number of available general purpose registers. Hence,
a resource optimization problem results. Those values should be kept in processor
registers which produce the highest benefits for the execution time.

Register allocation proper attempts to determine this set of symbolic registers.
Register assignment then associates them with particular processor registers.

Variations of graph colouring algorithms are in use for register allocation. A
conflict graph is built over the set of symbolic registers. Two such registers are
connected by an edge if they are simultaneously alive. In this case, they can’t
be assigned to the same processor register. This conflict graph is then coloured
with colours corresponding to processor registers. A heuristics is used to use as
few registers as possible[6]. If the register allocator cannot find enough colours, i.e.
registers, it introduces a temporary memory location for the corresponding value
and the necessary spill code to access that memory location.

3.3. Instruction scheduling

Modern high speed processors offer some intraprocessor parallelism, e.g., parallel
functional units and/or pipelines. Instruction scheduling attempts to reorder the
(sequential) instruction sequences produced by previous phases in order to exploit
these parallel capabilities. A program dependence analysis determines data and
control dependences in the program. These limit the ways the instructions of the
program can be reordered.

Control dependences refer to instructions whose execution depends on certain
control conditions; they arise due to branch- or loop-instructions. Data depen-
dences are pairs of read or write accesses to the same register or to other hardware
components. Write accesses are usually called definitions, read accesses uses. Data
dependences can be categorized as true-dependences(def-use), output dependences
(def-def) and anti-dependences(use-def). If there is a true dependence between two
instructions i and j, then i defines a value that is used by j. Swapping the two
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instructions would lead to a different semantics of the program. The other types
of dependences are defined analogously; only positions of independent instructions
may be rearranged. The data dependences are modeled by the data dependence
graph GD = (VD, ED) where ED = Etrue

D ∪ Eanti
D ∪ Eoutput

D . The set of nodes VD

represents the instructions of the input program, the set ED models the different
kinds of data dependences.

The data dependence graph defines a partial order among the instructions of
the input program. We define a precedence relation ≺ on VD where

i ≺ j ⇔ i
+−→

GD
j

Thus, i ≺ j holds if operation j depends directly or indirectly on operation i. The
resulting problem is to rearrange the instructions of the input program so that
the execution time is minimized, but no precedence constraints are violated. In
its simplest form, instruction scheduling corresponds to the classical problem of
precedence constrained scheduling. Let a set T of tasks of length 1 be given, a
partial order ≺ on T , m machines and an upper bound T for the schedule length.
The goal is to find a schedule σ : T → {1, . . . , T}, so that for all t ∈ {1, . . . , T}
where |{i ∈ T : σ(i) = t}| ≤ m holds:

i ≺ j ⇒ σ(i) < σ(j)

This optimization problem is NP-complete, except for the special case that there
are only two processors [12] or each task i has at most one immediate predecessor
with respect to the relation ≺. So, the tasks correspond to instructions and the
machines represent parallel functional units of the underlying processor, e.g. ALUs,
multipliers, etc.

In the scope of this paper, we will concentrate on the problem of instruction
scheduling for VLIW-architectures (see Fig. 3).

Figure 3. Example of the VLIW-architecture with 5 functional units

In these architectures, most machine instructions can perform several indepen-
dent tasks at a time. Thus, they can be considered as composed from several
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RISC-like microoperations. These microoperations are subject to the scheduling
process; the goal of the scheduling process is to pack the microoperations of the
input program in as few instructions as possible. Each microoperation can be as-
signed to a control step, i.e. a clock cycle, in which the execution of the instruction
containing that microoperation is started.

Several heuristic scheduling methods are in use to solve this complex task, e.g.
list scheduling [10], region scheduling [15], and percolation scheduling [22]. Results
bounding the distance from the optimum only exist for very regular architectures.

3.4. The phase ordering problem

The above listed phases of code generation are not independent. A decision im-
proving one’s result may make another’s result worse.

Code selection naturally attempts to keep the costs low by using as many reg-
isters as possible. It is usually performed before register allocation assuming an
infinite number of registers. It thus is in conflict with register allocation which
has to cope with a limited number of registers. The code selector may produce
an instruction sequence which it considers the least expensive using more registers
than are available. Another instruction sequence using not more registers than are
available may turn out to be cheaper, once the register allocator has inserted spill
code.

A similar conflict exists between register allocation and instruction scheduling.
Instruction scheduling uses registers to increase the instruction level parallelism.
In the context of register allocation they are required to reduce the number of
memory accesses. If register allocation is performed first, it can limit the amount
of achievable instruction-level parallelism by assigning the same physical register to
independent intermediate results. This prevents an overlapping of the corresponding
operations by the scheduler. If instruction scheduling precedes register allocation,
the number of simultaneously live values can be increased so much that many of
these values have to be stored in main memory.

3.5. Phase integration by integer linear programming

Formulations based on integer linear programming (ILP) offer the possibility of in-
tegrating instruction scheduling and register assignment in a homogeneous problem
description and of solving them toghether. However, this is not the only advantage
over the traditional approaches treating these code generation subtasks in sepa-
rate phases. By using integer linear programming, it is possible to get an optimal
solution of both problems – albeit at the cost of high calculation times.

In order to speed up the solution process, approximations based on integer linear
programs can be used. There, an approximative solution is calculated, e.g. by par-
tial relaxations or problem decompositions, whose optimality cannot be guaranteed
any more. However, in [17] approximative algorithms have been presented which
produce optimal solutions in most cases.

Another feature is the ability to provide lower bounds on the optimal schedule
length. The solution of graph-based heuristics is always an upper bound and it is not
known, how much the optimal schedule length is exceeded. By solving relaxations
of the corresponding ILP, the result is no feasible solution, but a lower bound on
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the schedule length. This lower bound can be used to estimate the quality of the
given heuristic solution. This is useful for input programs which could not be solved
exactly by integer linear programming for reasons of complexity.

4. Time-based models

One well-known ILP-formulation which can be used to model the problem of in-
struction scheduling has been presented in the OASIC-approach [13, 14, 17, 18].
Compared to a standard formulation for the flow shop problem, the Wagner model,
there are apparent similarities. In both formulations, the choice of the decision
variables is based on the time the modelled event is assigned to. In contrast to
order-based approaches, the variable name says nothing about the predecessors or
successors of the associated task or instruction.

4.1. The Wagner modell

Wagner’s model describes the permutation flow shop, in which all machines process
the jobs in the same order [5, 25]. Once the job sequence on the first machine is
fixed, it will be kept on all remaining machines. Any flow shop scheduling problem
consisting of at most three machines has an optimal schedule which is a permu-
tation schedule. However, in the general case the objective value of the optimal
permutation schedule can be worse than that of the optimal flow shop schedule
[24].

In the Wagner model, the following decision variables are used:

• zij =
{

1, if job Ji is assigned to the jth position in the permutation
0, otherwise

• xjk = idle time on machine Mk before the start of the job in position j in the
permutation of jobs

• yjk = idle time of the job in the jth position in the permutation after finishing
processing on machine Mk, while waiting for machine Mk+1 to become free.

• Cmax = maximimum flow time of any job in the job set (makespan)

In the following, we assume that m machines {M1, . . . , Mm} and n jobs {J1, . . . , Jn}
are given; pmj denotes the processing time of the task of job Jj executed on machine
Mm. Then the formulation reads as follows:
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min Cmax

subject to
n∑

j=1

zij = 1, i = 1, . . . , n (1)

n∑

i=1

zij = 1, j = 1, . . . , n (2)

n∑

i=1

prizi,j+1 + yj+1,r + xj+1,r = yjr +
n∑

i=1

pr+1,izij + xj+1,r+1,

j = 1, . . . , n− 1; r = 1, . . . ,m− 1 (3)
n∑

j=1

n∑

i=1

pmizij +
n∑

j=1

xjm = Cmax (4)

k−1∑
r=1

n∑

i=1

prizi1 = x1k, k = 2, . . . , m (5)

y1k = 0, k = 1, . . . , m− 1 (6)

Equations (1) and (2) assure that each job is processed exactly once by exactly
one machine. Equation (3) guarantees that the execution and waiting times between
all adjacent machines in the flow shop are consistent with each other. Equation (4)
determines the makespan by summing the waiting times and the execution times
of all tasks on the last machine in the schedule. Equation (5) adjusts the idle time
of machine k: the processing of the first job on this machine must begin as early
as the precedence relations allow. Equation (6) assures that the first job in the
permutation passes immediately to each successive machine.

4.2. The OASIC model

The OASIC -formulation (Optimal Architectural Synthesis with Interface Constraints)
has originally been developed for use in architectural synthesis [13, 14]. In [17], it
has been adapted to the special needs of performing combined instruction schedul-
ing and register assignment for a standard digital signal processor (Analog Devices
ADSP 2106x) [2, 1].

First, we will give an overview of the terminology used:

• The main decision variables are called xk
jn ∈ {0, 1}, where xk

jn = 1 means,
that microoperation j is assigned to the nth position (n ≥ 1) in the generated
schedule and is executed by an instance of resource type k.

• tj describes the starting time of a microoperation j.

tj =
∑

k:(j,k)∈ER

∑

n∈N(j)

n · xk
jn
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• N(j) = {asap(j), asap(j) + 1, . . . , alap(j)} is the set of possible control steps,
in which an execution of j can be started.

• Qk
i denotes the execution time of operation i on resource type k.

Each instruction of the input program can be executed by a certain resource
type on the processor, e.g. by the arithmetic logic unit (ALU) or by the multiplier.
In order to describe the mapping of instructions to hardware resources, a resource
graph is used which is defined following [27].

Definition 1 The resource graph GR = (VR, ER) is a bipartite directed graph. The
set of nodes VR = VD ∪ VK is composed of the nodes of the data dependence graph
VD and the available resource types represented by VK . Its edge set ER ⊂ VD × VK

describes a possible assignment where (j, k) ∈ ER means that instruction j ∈ VD

can be executed by the resources of type k.

The goal of the ILP-formulation is to minimize the execution time of the code
sequence to be optimized, so the objective function reads simply

min Msteps (7)

The correctness of the resulting schedule is guaranteed by several constraints:

1. time constraints

No instruction may exceed the maximum number of control steps Msteps ,
which is to be calculated.

tj ≤ Msteps ∀ j ∈ VD (8)

2. precedence constraints

When instruction j depends on instruction i, then j has to be executed after
completion of i.

∑
k∈VK :

(j,k)∈ER

∑

nj≤n

nj∈N(j)

xk
jnj

+
∑

k∈VK :

(j,k)∈ER

∑

ni≥n−Qk
i
+1

ni∈N(i)

xk
ini

≤ 1

∀ (i, j) ∈ Etrue
D ∪ Eoutput

D ,

n ∈ ({n + Qk
i − 1 | n ∈ N(i)} ∩N(j))∑

k∈VK :

(j,k)∈ER

∑
nj<n

nj∈N(j)

xk
jnj

+
∑

k∈VK :

(j,k)∈ER

∑

ni≥n−Qk
i
+1

ni∈N(i)

xk
ini

≤ 1 ∀ (i, j) ∈ Eanti
D ,

n ∈ ({n + Qk
i − 1 | n ∈ N(i)} ∩N(j)) (9)

3. assignment constraints

The execution of an operation must start in exactly one control step and is
performed by exactly one resource type.
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∑
k∈VK :

(j,k)∈ER

∑

n∈N(j)

xk
jn = 1 ∀ j ∈ VD (10)

4. resource constraints
The number of available instances of a resource type must not be exceeded, so
that in no control step, more than Rk operations may be executed by resource
type k.

∑

j∈VD:(j,k)∈ER

∑

n∈N ′(j,k,n′)

xk
jn ≤ Rk ∀k ∈ VK ∧ 0 ≤ n′ ≤ Msteps

with N ′(j, k, n′) = {n ∈ N(j) : n′ = n + p, 0 ≤ p ≤ Qk
j − 1} (11)

4.3. Comparison

In both formulations, the decision variables have a time-based semantics. Following
the terminology of the flow shop problem, job Ji is assigned to the jth position in
the permutation, if zij = 1. Each position can be considered as a time unit; the
permutation, i.e. the ordering of the jobs is not reflected in the variables. In the
OASIC-formulation, xk

jn = 1 means that operation j is executed at control step n
by a resource of type k. If all operations take one clock cycle to execute, this is
equivalent to assigning operation j to the nth position in the generated schedule.
So the ordering of the instructions corresponds to the job-permutations in the flow
shop modelling.

Determining the value of the makespan (the optimal schedule length) has been
shifted into the constraints in both formulations (see constraints (4) and (8)). The
value of the makespan is equal to the sum of execution and waiting times of that
machine which executes last. For the problem of instruction scheduling, the ordering
of the instructions has to be determined by the optimization process, so the starting
time of the last instruction is not yet known. Instead, the maximum of all starting
times is considered.

From a theoretical point of view, the underlying scheduling models are not
identical; however it is noticeable that important problems of different application
areas share a great deal of formulation similarities. Both models use time-based
variables; the machines of the flow shop correspond to the functional units of the
instruction scheduling problem and the instructions correspond to the tasks of one
job. The differences are that for instruction scheduling only one job has to be
considered, whereas several instances of the machines have to be taken into account.

5. Order-based approaches

Another way of modelling the problem of instruction scheduling is used in the
SILP-approach [27, 17, 18]. The generated ILP-formulation has similarities to the
Manne-coding for the job shop scheduling problem. Both models can be called
order-based, since the semantics of the decision variables reflect the ordering of the
instructions or tasks which has to be calculated.



OR-method in compiler backends 171

5.1. The Manne formulation

In order to solve the job shop problem, one classical formulation has been presented
by Manne in [21]. Let T = {T1, T2, . . . , Tn} be the set of tasks where T0 is the
virtual start task and Tn+1 is the virtual end task. The set of machines is denoted
by P = {M1, . . . ,Mm}. Each job J is composed of an ordered list of tasks from T ,
so there is a precedence relation among the tasks of each job (Ti1 ≺ · · · ≺ Tir

, if
|Ji| = r). The set Ek contains all pairs of tasks which can be executed on machine
Mk. Binary variables wij are introduced for each such pair (Ti, Tj) ∈ Ek). If
wij = 0, task i has to be executed before task j on machine Mk; otherwise, if
wij = 1, j has to be executed before i. The variables ti denote the starting time
for the processing of an task Ti and T is an upper bound of the makespan, e.g. the
sum of all processing times pj .

Then, the formulation can be given as follows:

min Cmax

subject to
ti + pi ≤ Cmax ∀ i where Ti is the last task of some job J (12)
ti + pi ≤ tj ∀ Ti ≺ Tj (13)
ti + pi ≤ tj + Twij ∀k ∀(Ti, Tj) ∈ Ek (14)
tj + pj ≤ ti + T (1− wij) ∀k ∀(Ti, Tj) ∈ Ek (15)

wij ∈ {0, 1} (16)
ti ≥ 0 ∀ Ti ∈ T (17)

The makespan is equal to the finish time for the execution of the last processed
task (12). The constraints in (13) guarantee that the starting times of the tasks
correspond to the machine sequences of each job. For a fixed job, a task may only
begin after the processing of the preceding task of the same job has been finished.
Constraints (14) and (15) guarantee that the starting times are not in conflict with
the job sequences. If a task i has to be processed on a certain machine Mk before
a task j belonging to another job (wij = 0), then j must be started after the
processing of i has been finished.

5.2. The SILP formulation

The ILP-formulation described in this section was presented in [27] under the name
SILP (Scheduling and Allocation with Integer Linear Programming). Again we will
give an overview over the terminology first.

• The variable ti indicates the starting time of a microoperation i (see Sec. 3.3.);
the ti values have to be integral.

• wj describes the execution time of instruction j ∈ VD.

• The busy time of the hardware component executing operation j is denoted
by zj (i.e. the minimal time interval between successive data inputs to this
functional unit).
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• The number of available resources of type k ∈ VK is Rk.

The ILP is generated from a resource flow graph GF . This graph describes the
execution of a program as a flow of the available hardware resources through the
instructions of the program. For each resource type, this leads to a separated flow
network. Each resource type k ∈ VK is represented by two nodes kQ, kS ∈ VF ;
the nodes kQ are the sources, the nodes kS are the sinks in the flow network to be
defined. The first instruction to be executed on resource type k gets an instance
kr of this type from the source node kQ; after completed execution, it passes kr

to the next instruction using the same resource type. The last instruction using a
certain instance of a resource type returns it to kS . The number of simultaneously
used instances of a certain resource type must never exceed the number of available
instances of this type. An example resource flow graph for two different resource
types and two instructions is given in Fig. 4. The instructions shown there belong
to the instruction set of the digital signal processor ADSP-2106x SHARC. DM de-
notes the data memory and S the arithmetic and logic unit (ALU). The instruction
r1=dm(i0,m0) is a load operation where the contents of a memory cell are stored in
register r1. The address of the correct memory cell is obtained by adding the two
registers i0 and m0. The semantics of r4 = dm(i1,m1) is analogous. The instruc-
tion r6 = t4 + r5 adds the contents of registers r4 and r5 and stores the result in
register r6. Finally, r7=min(r4,r5) stores the minimum of the operand registers
in r7.

Figure 4. Resource flow graph for two instructions executed on an ALU and the
data memory, resp.

Definition 2 Let GD = (VD, ED) be the data dependence graph for an input pro-
gram and GR = (VR, ER) its resource graph. The resource flow graph GF is a
directed graph GF = (VF , EF ) with

VF =
⋃

k∈VK

V k
F und EF =

⋃

k∈VK

Ek
F

where

V k
F = V k

D ∪ {kQ, kS} = {u ∈ VD |(u, k) ∈ ER} ∪ {kQ, kS}
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and

Ek
F = {(i, j) |i, j ∈ V k

D ∧ j not dependent on i ∧ i 6= j}
∪ {(kQ, j) |(j, k) ∈ ER }
∪ {(j, kS) |(j, k) ∈ ER }

Each edge (i, j) ∈ Ek
F is mapped to a flow variable xk

ij ∈ {0, 1} . A hardware
resource of type k is moved through the edge (i, j) from node i to node j, if and only
if xk

ij = 1.

V k
D is the set of all nodes of the data dependence graph belonging to instructions

which can be executed by resource type k. Each edge (µ, ν) ∈ Ek
F describes a

possible flow of resources of type k ∈ VK from µ to ν. The flow entering a node
j ∈ VD is represented by the variable Φk

j and the flow leaving node j is denoted by
Ψk

j . The exact definitions are given below:

Φk
j =

∑

(i,j)∈Ek
F

xk
ij ; Ψk

j =
∑

(j,i)∈Ek
F

xk
ji (18)

The goal of this ILP-formulation is to transform a given set of machine instruc-
tions in order to minimize the number of clock cycles required for execution. The
basic ILP-formulation for the problem of instruction scheduling with respect to
resource constraints can then be given as follows:

• objective function

min Msteps (19)

• constraints

1. time constraints
For no instruction the start time may exceed the maximal number of
control steps Msteps (which is to be calculated)

tj ≤ Msteps ∀ j ∈ VD (20)

2. precedence constraints
When instruction j depends on instruction i, then j may be executed
only after the execution of i is finished.

tj − ti ≥ wi ∀ (i, j) ∈ Eoutput
D ∪ Etrue

D

tj − ti ≥ 0 ∀ (i, j) ∈ Eanti
D

3. flow conservation
The value of the flow entering a node must equal the flow leaving that
node.

Φk
j −Ψk

j = 0 ∀ j ∈ VD, ∀ k ∈ Vk : (j, k) ∈ ER (21)
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4. assignment constraints
Each operation must be executed exactly once by one hardware compo-
nent.

∑
k∈VK :

(j,k)∈ER

Φk
j = 1 ∀ j ∈ VD (22)

5. resource constraints
The number of available resources of all resource types must not be
exceeded.

∑

(k,j)∈Ek
F

xk
kj ≤ Rk ∀k ∈ VK (23)

6. serial constraints
When operations i and j are both assigned to the same resource type k,
then j must await the execution of i, when a component of resource type
k is actually moved along the edge (i, j) ∈ Ek

F , i.e., if xk
ij = 1.

tj − ti ≥ zi + (
∑

k∈VK :

(i,j)∈Ek
F

xk
ij − 1) · αij ∀(i, j) ∈ Ek

F (24)

The better the feasible region of the relaxation PF approximates the feasible
region of the integral problem PI , the more efficiently can the integer lin-
ear program be solved (see Sec. 5.4.). In [27], it is shown, that the tightest
polyhedron is described by using the value αij = zi − asap(j) + alap(i).

5.3. Comparison

The Manne-model is based on the disjunctive graph, the SILP-formulation on the
resource flow graph. If we compare the two models, we can see that both graphs
are basically equivalent. Each disjunctive edge corresponds to a pair of inversely
directed edges in the resource flow graph. If there is a precedence relation between
two instructions, only one edge is drawn between the corresponding nodes. So, the
disjunctive graph corresponds to the resource flow graph augmented with the edges
of the data dependence graph. Since the data dependence edges are only needed
for the precedence constraints, they are not included in the resource flow graph.

Constraints (20) and (12) are basically also equivalent; the difference is that
the SILP-formulation considers the starting time of each microoperation whereas
Manne models the end time for the processing of the tasks. In both formulations,
precedence constraints have to be respected. Inequalities (14) and (15) correspond
to the flow conservation constraints (21) in connection with the serial constraints
(24). So the tasks correspond to microoperations, the disjunctive edges to a pair
of flow edges, the machines to the resource types and the makespan to the minimal
execution time. As already mentioned in the previous section, the difference lies in
the fact, that for the problem of instruction scheduling, only one “job” has to be
considered; on the other hand, there can be several instances of each resource type.
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5.4. Optimization of the model structure

Evidently, there are many alternatives for creating an ILP-formulation; yet it is very
important to choose a formulation which is well-structured in order to be able to
solve large instances of integer linear programming problems. The goal of integer
linear programming is to find the integral point in a given feasible area, which
minimizes or maximizes the considered objective function (see Fig. 5).

Figure 5. Feasible areas

More formally, integer linear programming (ILP) is the following optimization prob-
lem:

min zIP = cT x (25)
x ∈ PF ∩ Zn

where

PF = {x | Ax ≥ b, x ∈ Rn
+}, c ∈ Rn, b ∈ Zm, A ∈ Zm×n

Since PF is described only by equality and inequality constraints (no integrality
constraints are required), any linear objective function over PF can be optimized
in polynomial time using linear programming algorithms. Unfortunately, in most
cases, no representation of PI as a system of linear equations is known; furthermore
the number of inequality constraints required to describe the convex hull is usually
extremely large [19]. Therefore, one can try to solve a related problem, called the
LP-relaxation of the integer linear problem, which reads as follows:

min zR = cT x (26)
x ∈ PF

Since PI ⊆ PF , one can conclude from (25) and (26) that zR ≤ zIP . If PF = PI ,
the polyhedron PF is called integral and in this case, the equation zR = zIP holds.



176 D. Kästner and R. Wilhelm

Thus, the optimal solution can be calculated in polynomial time by solving its
LP-relaxation. Therefore, while formulating an integer linear program, one should
attempt to find equality and inequality constraints such that PF will be integral.
It has been shown, that for every bounded system of rational inequalities there is
an integer polyhedron [14], [23]. Unfortunately, for most problems it is not known
how to formulate these additional inequalities—and there could be an exponential
number of them [19].

In general, PI $ PF , and the LP-relaxation provides a lower bound on the
objective function. The efficiency of many integer programming algorithms depends
on the tightness of this bound. The better PF approximates the feasible region PI ,
the sharper is the bound, so that for an efficient solution of an ILP-formulation, it
is extremely important, that PF is close to PI . This can be achieved by developing
tight descriptions of PF that closely approximate PI . Moreover, formal analysis can
be used to determine new valid inequalities (the inequalities that arise due to the
integrality of the variables), so that the formulations can be further tightened [7].

Both the SILP- and the OASIC-models try to explore these results in order
to arrive at a well-structured formulation. The goal of the OASIC-approach is to
formulate the integer linear program in a way that permits its transformation to a
node packing graph, which has been partially characterized by its facets. Starting
from a more intuitive formulation of the precedence constraints, additional valid
inequalities could be developed and are actually subsumed in the given formulation
of the precedence constraints. The resulting polytope is in general not identical
with the integral polytope, but by taking into account the additional facets, a
better approximation to the integral polytope is obtained. This is covered in detail
in [13, 14]; an overview is given in [17, 18]. In the SILP-approach, additional valid
linear inequalities have been added to the previously presented formulation in order
to get a tighter approximation to the integral polytope. Moreover, in [27] it has
been proven that the following value of the constant α in the serial constraints leads
to the tightest possible polytope: αij = zi − asap(j) + alap(i).

Similar optimizations have been performed by Liao and You in [20], where a
slightly modified variant of the Manne-formulation is presented, which leads to
a tigther approximation to the integral polytope. This is achieved by replacing
constraints (14) and (15) by

zij = (tj − ti) + Twij − pj ∀ k ∀ (Ti, Tj) ∈ Ek (27)
zij ≤ T − pi − pj ∀ k ∀ (Ti, Tj) ∈ Ek (28)

where zij ≥ 0 is a non-negative slack variable.
In [3], the Manne model is extended by adding valid inequalities, e.g. based on

cutting planes. Again the goal is to obtain better lower bounds in order to improve
the performance of the used branch and bound algorithm.

6. Modelling of the register assignment

6.1. Extension of the OASIC model

Up to now, the presented ILP-formulation covers only the problem of instruction
scheduling. In order to take into account the problem of register assignment with
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respect to a homogeneous register set, the above presented formulation has to be
extended by some additional constraints. It must be assured that in no control step
more than R registers are used, so that there are at most R overlapping lifetimes.

A variable i is defined at a program point, when it is assigned a value; a vari-
able is used, when it is referenced at a program point. For a given instruction
sequence, the lifetime of a variable can be represented by a lifetime-defining edge
i → j between the operation i, that defined the variable, and the operation j, that
last used the variable. However, each variable can be used within more than one
operation. Hence, lifetime-defining edges are possibly not unique, since the order of
the operations is not fixed, when simultaneous instruction scheduling and register
allocation is performed. Thus, in a naive approach a lifetime-defining edge will be
inserted between a definition and each use. By means of transitivity analysis and
of asap-/alap-analysis, the number of edges can be reduced. For more information,
see [13, 14, 17].

In the constraints generated to take into account the problem of register alloca-
tion, the following terminology is used: An edge i ≺ j crosses control step n, if and
only if N(i)∩{0, 1, . . . , n− (wi− 1)} 6= ∅ and N(j)∩{n+1, n+2, . . . , T} 6= ∅. The
value en(i) indicates the number of edges with head i crossing control step n; the
set M(n) represents the set of all maximal sets of edges M ′(n), which cross control
step n and have unique heads.

∑

ja≺jb∈M ′(n)

(
∑

k∈VK

∑

n1≤n

n1∈N(ja)

xk
jan1

+
∑

k∈VK

∑
n2>n

n2∈N(jb)

xk
jbn2

−

∑

k∈VK

∑

n3≤n

n3∈N(jb)

xk
jbn3

−
∑

k∈VK

∑
n4>n

n4∈N(ja)

xk
jan4

) ≤ 2 ·R (29)

∀ n ∧ ∀ M ′(n) ∈ M(n)

When e edges are crossing control step n and among these en(i) have head i,
while the rest of the edges has unique heads, inequality (29) has to be generated
exactly en(i) times for control step n. In the general case, the number of constraints
to be generated for control step n is given by

∏
i en(i). The register allocation

constraint calculates two times the number of crossing edges for each control step.
The relevant variables are partitioned into four groups and depending on their group
they are used in the inequality either with positive or with negative sign.

As for the complexity of this ILP-formulation, the number of constraints is
bound by O(n3) when no register allocation is considered. The number of variables
is O(n2). Considering the problem of integrated instruction scheduling and register
allocation, the worst case number of binary variables doesn’t change, however, the
number of constraints can grow exponentially due to the register crossing constraints
(see [13, 14, 17]).

6.2. Extension of the SILP model

To take into account the problem of register assignment, the SILP formulation
has to be modified, too. Again following the concept of flow graphs, the register
assignment problem is formulated as register distribution problem.
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Definition 3 (register flow graph) The register flow graph Gg
F = (V g

F , Eg
F ) is a

directed graph with a set of nodes V g
F = Vg ∪G and a set of directed arcs Eg

F . The
set G contains one resource node g for each available register set. A node j ∈ Vg

represents an operation performing a write access to a register, this way creating a
variable with lifetime τj. Each arc (i, j) ∈ Eg

F provides a possible flow of a register
from i to j and is assigned a flow variable xg

ij ∈ {0, 1}. Then the same register is
used to save the variables created by nodes i and j, if xg

ij = 1.

Lifetimes of variables are reflected by true dependences. When an instruction i
writes to a register, then the life span of the value created by i has to reach all uses of
that value. To model this, variables bij ≥ 0 are introduced measuring the distance
between a defining instruction i and a corresponding use j. The formulation of the
precedence relation is replaced by the following equation:

tj − ti − bij = wi (30)

Then, for the lifetime of the register defined by instruction i:

τi ≥ bij + wi ∀ (i, j) ∈ Etrue
D (31)

An instruction j may only write to the same register as a preceding instruction i,
if j is executed at a time when the life span of i, τi is already finished. In other
words: If the variable produced by instruction i has lifetime τi and the output of
instruction j is to be written into the same register (i.e. when xg

ij = 1 holds), then
tj−ti ≥ τi must hold. This fact is caught by the following register serial constraint :

tj − ti ≥ wi − wj + τi + (xg
ij − 1) · 2T (32)

Here, T represents the number of machine operations of the input program, which
surely provides an upper bound for the maximal possible lifetime.

In order to correctly model the register flow graph, flow conservation constraints,
as well as resource constraints and assignment constraints have to be added to the
integer linear program. This leads to the following equalities and inequalities:

Ψg
g ≤ Rg (33)

Φg
j = 1 ∀ j ∈ Vg (34)

Φg
j −Ψg

j = 0 ∀ j ∈ V g
F (35)

tj − ti ≥ wi − wj + τi + (xg
ij − 1) · 2T ∀(i, j) ∈ Eg

F (36)

Moreover, the ILP-formuation can be tightened by an identification of redundant
serial constraints and the insertion of valid inequalities; for further information see
[27, 17].

Following [7], we will measure the complexity of an ILP-formulations in terms
of the number of constraints and binary variables. The number of constraints is
O(n2), where n is the number of operations in the input program. The number of
binary variables can be bound by O(n2), however it’s only the flow variables used
in the serial constraints, that have to be specified as integers [27, 17].
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7. ILP-based approximations

Experimental results have shown, that in spite of using well-structured formula-
tions, the computation time for solving the ILP’s for instruction scheduling and
register assignment is high [17, 18]. Therefore, it is an interesting question to know,
whether heuristics can be applied which cannot guarantee an optimal solution but
can also deal with larger input programs. So, in the following we will give a short
overview of some approximation algorithms for the SILP-formulation which have
been developed and tested in [27, 17]. Note that no analytically evaluated accu-
racy can be guaranteed, so the use of the term ”approximation” differs from the
definition of ”approximation algorithms” in [4].

7.1. Approximation by rounding

The basic idea of this approach is to solve only (partially) relaxed problems. Relaxed
binary variables are fixed one by one to that value ∈ {0, 1}, which they would take
presumably in an optimal solution. In the basic formulation, the SILP-approach
requires only the flow variables appearing in the serial constraints to be specified
as binary; these are forming the set MS . Since these variables are multiplied by a
large constant, one can assume, that a relaxed value close to 1 (0) indicates that
the optimal value of that variable is also 1 (0) (see [27]).

First, the approximation algorithm replaces the integrality constraint x ∈ {0, 1}
for all x ∈ MS by the inequality 0 ≤ x ≤ 1 and solves the resulting mixed integer
linear program. After that, a non-integral variable x ∈ MS with smallest distance
to an integer value is rounded to that value by adding an appropriate equation to
the ILP-formulation. Then, the mixed integer linear program is solved again and
the rounding step is repeated. It is possible that the rounding leads to an infeasible
ILP—then the latest fixed variable is fixed to its complement. When the MILP
is still unsolvable, an earlier decision was wrong. Then, in order to prevent the
exponential cost of complete backtracking, integrality constraints are reintroduced.
This is done by grouping the fixed binary variables by the distance they had to
the next integral value before rounding and redeclaring them as binary beginning
with those with the largest distance. It is clear, that in the worst case, the original
problem has to be solved again.

Since only the variables x ∈ MS are relaxed, the calculation of the relaxations
can take a long time; moreover due to backtracking and false rounding decisions,
the computation time can be higher than with the original problem. The quality
of the solution is worse than for the other approximations, so this approach cannot
be considered promising.

7.2. Stepwise approximation

Again, the variables x ∈ MS are relaxed and the resulting MILP is solved. Then
the following approach is repeated for all control steps, beginning with the first one.
The algorithm checks whether any operations were scheduled to the actual control
step in spite of a serial constraint formulated between them. Let M c

S be the set of all
variables corresponding to flow edges between such colliding operations with respect
to the actual control step c. All x ∈ M c

S are declared binary and the resulting MILP
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is solved. This enforces a sequentialisation of all microoperations which cannot be
simultaneously executed in control step c and so cannot be combined to a valid
instruction. Then, for all x ∈ M c

S which have solution value x = 1 this equation is
added to the constraints of the MILP, so that these values are fixed. The integrality
constraints for the x ∈ M c

S with value x = 0 are not needed any more and are
removed. Then, the algorithm considers the next control step.

After considering each control step, it is still possible for some variables x ∈ MS

to have non-integral values. Then the set of all x ∈ MS with non-integral value is
determined iteratively, these variables are redeclared binary and the MILP is solved
again. This is repeated until all variables have integral values.

This way, a feasible solution can always be obtained. Since for each control step
optimal solutions with respect to arosen collisions are calculated, it can be expected
that the resulting fixations also lead to a good global solution.

7.3. Isolated flow analysis

In this approach, only the flow variables x ∈ MS corresponding to a certain resource
type r ∈ R are declared as binary. The flow variables related to other resources are
relaxed, i.e.

0 ≤ x ≤ 1 ∀ x ∈ MS mit res(x) 6= r

x ∈ {0, 1} ∀ x ∈ MS mit res(x) = r

Then, an optimal solution of this MILP is calculated and the x ∈ MS executed by
r are fixed to their actual solution value by additional equality constraints. This
approach is repeated for all resource types, so a feasible solution is obtained in the
end (see Fig. 6).

Figure 6. Isolated flow analysis

This way, in each step, an optimal solution with respect to each individual
resource flow is calculated. Since the overall solution consists of individually optimal
solutions of the different resource types, in most cases it will be equal to an optimal
solution of the entire problem. This optimality, however, cannot be guaranteed,
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as when analysing an individual resource flow, the others are only considered in
their relaxed form. However, the computation time is reduced since only the binary
variables associated to one resource type are considered at a time.

7.4. Stepwise approximation of isolated flow analysis

The last approximation developed for the SILP-Formulation is a mixture of the two
previously presented approaches. At each step, the flow variables of all resources
except the actually considered resource type r are relaxed; for the variables x ∈ MS

with res(x) = r, the stepwise approximation is performed until all these variables
are fixed to an integral value. Then the next resource type is considered. Clearly,
this approximation is the fastest one, and experimental results have shown that
the solutions provided by this approximation are as good as the results of the two
previously presented approximations [17, 18].

7.5. Applicability and performance

The applicability of ILP-based approximations depends strongly on the chosen for-
mulation. While for the SILP-formulation several efficient approximations could
be developed, the OASIC-approach turned out not to be suited for approxima-
tions. The only approximation for this formulation is the rounding method which
is not practicable due to the bad solution quality and the high calculation time.
So, another criterion for chosing an ILP-formulation should be the applicability of
approximative solution techniques. By using ILP-based approximations, the cal-
culation time could be reduced considerably. Some problems whose exact solution
took more than 24 hours could be calculated in several minutes; for further infor-
mation, see again [17, 18]. In most cases, the solutions were optimal; however, in
the general case, this optimality cannot be guaranteed.

8. Conclusion

In this article we have shown that there are apparent similarities between typical
optimization problems of operations research and of compiler construction. These
analogies were pointed out by opposing integer linear programming formulations
for the job shop scheduling problem and the problem of instruction scheduling and
register assignment.

The complexity of integer linear programming is high. Thus, it is important
to choose a well-structured formulation. We have shortly explained the reason for
this requirement and presented some important guidelines for optimizing an ILP-
formulation.

Algorithms used in a compiler typically have to be fast, so that the calculation
time for optimally solving large ILPs is not acceptable. We have presented several
approximation algorithms which produce mostly optimal solutions in acceptable
calculation time. While traditional graph-based heuristics suffer from the phase
ordering problem, in this way a partial phase integration during code generation
can be achieved.
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