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Abstract

This PhD research project developed and evaluated innovative approaches

to computer system user authentication, using biometric characteristics.

It involved experiments with a signi�cant number of participants and

development of new approaches to biometric data representation and

analysis.

The initial authentication procedure, that we all perform when we log

onto a computer system, is considered to be the �rst line of protection for

computer systems. The password is the most common veri�cation token

used in initial authentication procedures. Unfortunately, passwords are

subject to numerous attack vectors (loss, theft, guessing or cracking),

and as a result unauthorised persons may gain access to the veri�cation

token and be incorrectly authenticated. This has led to password-based

authentication procedures being responsible for a large proportion of

computer network security breaches.

In recent years, the use of biometrics has been increasingly researched

as an alternative to passwords in the initial authentication procedure.

Biometrics concerns the physical traits and behavioural characteristics

that make each individual unique. Biometric authentication involves the

use of biometric technologies in authentication systems, with the aim to

provide accurate veri�cation (based on biometric characteristics).

Research has demonstrated that uni-modal biometric authentication (that

is, authentication based on a single biometric characteristic) makes it

di�cult for an impostor to impersonate a legitimate user. More recent

research is �nding that multi-modal biometric authentication (that is,

authentication based on the combination of multiple biometric charac-

teristics) can make it even more di�cult for an impostor to impersonate a

legitimate user. Thus multi-modal biometrics claims improved accuracy

and robustness.
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Multi-modal biometrics requires consideration of various aspects of data

integration, known to the �eld of data fusion. Multi-modal biometric

research has, until recently, focused on the fusion of data (from multi-

ple sources) at the decision level or the con�dence score level. It has

been proposed that fusion of data at the feature level will produce more

accurate and reliable veri�cation.

However, fusion of data at the feature level is a more di�cult task than

fusion at the other two levels. For decision level fusion, `accept' or `reject'

results from the di�erent data sources are fused. For con�dence score

level fusion, con�dence scores (typically in the continuous interval [0, 1])

from the di�erent data sources are fused. That is, for the aforementioned

levels, the data from the multiple sources are of the same nature. Feature

level fusion combines feature vectors, where the data from the di�erent

sources are most likely to consist of di�erent units of measurement.

Data fusion literature formally speci�es that data may be combined ac-

cording to three paradigms: competitive, complementary, and coopera-

tive. Competitive data fusion assesses data from all available sources,

and bases classi�cation upon the `best' source. Complementary data fu-

sion combines all available data from all sources, and bases classi�cation

upon this combined data. Cooperative data fusion involves the selection

of the best features of each individual data source, and then combines

the selected features prior to classi�cation.

The objectives of the current study were to investigate the use of two

individual biometric characteristics (keystroke dynamics and �ngerprint

recognition). For keystroke dynamics, feature selection was employed

to reduce the variability associated with data from this characteristic.

For �ngerprint recognition, a new method was developed to represent

�ngerprint features. This was done to assist classi�cation by Arti�cial

Neural Networks, and to meet the requirement to facilitate fusion with

the keystroke dynamics data at the feature level.
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Whilst feature level data fusion was the primary objective, investigation

of the two individual characteristics was conducted to enable comparison

of results with the data fusion results. For the data fusion investigation,

the complementary and cooperative paradigms were adopted, with the

cooperative approach involving four stages.

The feature selection method chosen to �lter keystroke dynamics data

was based on normality statistics, and returned results comparable to

many other research e�orts. The �ngerprint feature representation method

developed for this experiment demonstrated an innovative and e�ective

technique, which could be applicable in a uni-modal or a multi-modal

context.

As the new �ngerprint representation method resulted in a standard

length feature vector for each �ngerprint, data alignment and subsequent

feature level data fusion was e�ciently and practicably facilitated.

The experiment recruited 90 participants to provide typing and �nger-

print samples. Of these, 140 keystroke dynamics samples and 140 �n-

gerprint samples (from each participant) were utilised for the �rst two

phases of the experiment. Phase three of the experiment involved the

fusion of the samples from the �rst two phases, and thus there were

140 combined samples. These quantities provided 100 samples for false

negative testing and 10,500 samples for false positive testing (for each

participant for each phase of the experiment). These �gures are similar

or better than virtually all previous research studies in this �eld.

The results of the three phases of the experiment were calculated as the

two performance variables, the false rejection rate (FRR)�measuring

the false negatives�and the false acceptance rate (FAR)�measuring

the false positives.

The keystroke dynamics investigation returned an average FAR of

0.02766095 and an average FRR of 0.0862, which were at least com-

parable with other research in the �eld.
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The �ngerprint recognition investigation returned an average FAR of 0.0

and an average FRR of 0.0022, which were as good as (or better than)

other research in the �eld.

The feature level data fusion adopting the complementary approach re-

turned an average FAR of 0.0 and an average FRR of 0.0004. Feature

level data fusion adopting the cooperative approach returned respective

average FAR and FRR results of 0.00000381 and 0.0004 for stage 1, 0.0

and 0.0006 for stage 2, 0.0 and 0.001 for stage 3, and 0.0 and 0.001 for

stage 4.

The research demonstrated that uni-modal biometric authentication sys-

tems provide an accurate alternative to traditional password-based au-

thentication methods. Additionally, the keystroke dynamics investiga-

tion demonstrated that �ltering `noisy' data from raw data improved ac-

curacy for this biometric characteristic (though other �ltering methods

than that used in this research may improve accuracy further). Also, the

newly developed �ngerprint representation method demonstrated excel-

lent results, and indicated that its use for future research (in represent-

ing two dimensional data for classi�cation by Arti�cial Neural Networks)

could be advantageous.

The data fusion investigation demonstrated that multi-modal biomet-

ric authentication systems provide additional accuracy improvement (as

well as a perceived robustness) compared to uni-modal biometric authen-

tication systems. Feature level data fusion demonstrated improved accu-

racy compared with con�dence score level and decision level data fusion

methods. The new �ngerprint representation method (which provided

an innovative technique for representing data from any two dimensional

data source) facilitated feature level data fusion with keystroke dynamic

data, and the results validate the importance of using feature rich data.
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Chapter 1

Introduction

1.1 Context Of The Study

The subject matter of this dissertation concerns the �eld of computer security. There

are many de�nitions for computer security suggested in the literature; some are

essentially theoretical, whilst others are more practical. E�ectively, a computer

system should be available to work correctly and reliably under all circumstances,

and thus be resistant to abuse of any description. In practice, this may be impossible

to achieve. Therefore, the goal should be to make a computer system as secure as

it can practicably be made.

To achieve this goal, conscious decisions need to be made about what data and/or

resources are to be protected and from whom (Schneier, 2000). Some questions to

be posed are: What preventative measures can be taken? Will the security system

concentrate on prevention only, or will detection and recovery also be considered?

That is, if preventative measures fail, can the intrusion be detected and what will

be done to stop the attack and recover from it?

The answers to these questions (and others) need to be de�ned when planning the

security policy. The policy should be tailored to the speci�c security requirements

of the system under consideration. Once determined, the security policy can be

implemented using appropriate mechanisms.

Bruce Schneier (2000) has stated that computer security is a process, not a

product. That is, security can not be purchased in a box. Commercially available

1
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security systems may not suit a speci�ed security policy, and trying to adapt one

could be seriously detrimental to both product and policy. Also, it should always

be assumed that there will be someone who will attempt to circumvent any security

mechanism, so a security system (policies and mechanisms) must undergo continual

revision to try to stay ahead of would be attackers. Therefore, it is important to

develop processes that allow for this evolution.

Adopting an evolutionary approach is unlikely to solve all computer security

problems, but should reduce the incidents of security breaches. Failure to do so

will lead to inadequate security, which will undoubtedly leave a computer system

vulnerable to attack.

Historically, there are three basic aspects upon which a computer security system

rests (Bishop, 2003; Gar�nkel et al., 2003):

1. Con�dentiality: ensuring that data can only be viewed, wholly or in part, by

those authorised to do so. Con�dentiality therefore relates to the concealment

of sensitive data, and concerns the ability to read or copy data.

2. Integrity: ensuring that data or resources cannot be modi�ed by unauthorised

persons. Those who are permitted to modify data or resources must only

be able to do so according to their level of authorisation. Integrity therefore

relates to the trustworthiness of data or resources, and involves ensuring the

prevention of improper or unauthorised modi�cation; it concerns the ability

to write or delete data.

3. Availability: ensuring that a non-authorised user cannot prevent authorised

users from access to the information or resources they require. This alludes to

the maintenance of data or resources; protecting them from degradation.

In addition to the above points, Gar�nkel et al. (2003) recommend the following

three aspects for practical implementation:

1. Consistency: ensuring that the system behaves as expected by authorised

users. User expectation is subjective; however administratively, consistency
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means ensuring that the system performs correctly and reliably day after day.

It is therefore correlative to the integrity and availability of data and resources.

2. Access control: ensuring that authorised persons are able to do what they

are authorised to do, and that everyone else is not (Schneier, 2000). Access

control enforces data con�dentiality, integrity, and availability according to

user authorisation levels, by restricting access to all data and resources to

those authorised to access them. Mechanisms for implementing access control

include access control lists, cryptography, and authentication.

3. Non-repudiation: preventing denial of abuse of the system. This involves

providing undeniable proof that a user (legitimate or not) has performed an

action they are not authorised to perform, and emphasizes the importance of

logging and auditing.

Computer security has become a serious concern for companies, corporations,

governments, academia, and private users. Though there may be numerous reasons

for this concern, among them are the following:

• The seemingly limitless variety of tasks for which computer systems are being

used, which inevitably open up more avenues of attack.

• The exponential rate of increase in the incidents of reported breaches to com-

puter systems (CERT/CC, 2004). This is demonstrated by CERT/CC1 survey

�gures for the number of reported breaches from 1988 to 2003 (refer Appendix

A, Table A.1 and Figure A.1). It is reasonable to suspect that the number

of security breaches is far greater than those reported, because companies

and corporations are often reluctant to publicly acknowledge that they have

security problems (CERT/CC, 2004).

• The number of reported vulnerabilities by which computer systems have been

compromised (CERT/CC, 2004). This is demonstrated by CERT/CC survey

�gures for the number of reported vulnerabilities from 1995 to 2008 (refer

1CERT/CC is an acronym for Computer Emergency Response Team/Coordination Center. It
is an organization that specialises in computer security and conducts surveys on network security.
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Appendix A, Table A.2 and Figure A.2). Again, it is reasonable to suspect

that there are an unknown number of vulnerabilities yet to be discovered and

possibly exploited.

• Total company and corporate losses resulting from e-crime were estimated at

$666 million for 2003 (CSO, 2004). In a recent survey, average losses due to

security breaches was $234,244 per respondent (CSI, 2009)2.

In the majority of cases, these problems result when computer systems are net-

worked. A computer network is a collection of separate but interconnected comput-

ers, where interconnection means that computers share an agreed upon method of

communication and information exchange (Tanenbaum, 1996). A standalone com-

puter system is a single, separate computer that is not connected to other computers,

and can only be accessed if one is in physical proximity to it. Networked computers,

however, can be accessed remotely and an attacker can remain relatively anonymous.

Computer networks are complex systems which have several properties that im-

pact on security (Schneier, 2000):

• They are complicated, with possibly thousands of components doing di�erent

tasks; any one of which could malfunction or be subverted.

• They are interactive; individual components work together with any combina-

tion of other components.

• They evolve. That is, they do things that they were not originally designed to

do.

• They have bugs. That is, they misbehave in possibly unexplainable ways.

• They accept user input from a large number of people, sometimes all at the

same time. This property coupled with the above properties introduces the

seemingly endless possibility of vulnerability.

Given these properties and the ability for remote access, securing a computer

network is extremely di�cult (if at all possible). It is reasonable to conclude that

2The survey involved 443 respondents.
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the larger and more complex the network is, the more vulnerable it will be to attack

and the more intractable the task of securing it becomes.

The network that most of us are aware of is the Internet. The Internet is a

worldwide collection of interconnected networks that cooperate with each other using

an agreed upon protocol suite (Tanenbaum, 1996).

The popularity of the Internet has dramatically increased since its inception,

particularly since the introduction of the World Wide Web in 1993. An NUA3

survey reported that the number of Internet users in 2002 was 580,780,000 (Nua,

2002). Table A.3 and Figure A.3 (in Appendix A) present NUA survey �gures from

1995 to 20024 to demonstrate the ever increasing number of Internet users.

As the Internet is a network of computer networks, it su�ers from all the prob-

lems of any network. In fact, because the Internet is so large and complex, any

individual network connected to the Internet is more at risk because there are so

many users and points of access. CERT/CC (2004) stated that �given the widespread

use of automated attack tools, attacks against Internet-connected systems have be-

come so commonplace that counts of the number of incidents reported provide little

information with regard to assessing the scope and impact of attacks�5.

It is therefore imperative that security policies and mechanisms continue to de-

velop and evolve. Schneier (2000) believes that authentication across computer

networks is the most important security problem to be solved. Inadequate user au-

thentication is one of the major causes of security breaches, and is thus responsible

for many intrusions to computer systems. Authentication is the major focus of the

current study.

The next section 1.2 considers the motivation and objectives for the current study

by discussing authentication and the weaknesses of existent traditional methods.

3NUA Internet Surveys is an organization that conducts surveys of Internet usage.
4NUA no longer conduct surveys on the number of Internet users; the numbers are now so large

that it seems the surveys provide little signi�cant information.
5As of 2004, CERT/CC no longer publish the number of reported computer system breaches.

Instead, they are working with others in the community to develop and report on more meaningful
metrics.



6 CHAPTER 1. INTRODUCTION

1.2 Motivation And Objectives For This Research

1.2.1 Motivation For The Study

Authentication is required when it is necessary to know if a person is who they claim

to be. It is a procedure that involves a person making a claim about their identity,

and then providing evidence to prove it.

This study focuses on the initial authentication procedure that most computer

users are accustomed to performing when they log onto a computer system. The

initial authentication procedure is considered to be the �rst line of protection for

computer systems (Gar�nkel et al., 2003). It therefore stands to reason that this

procedure should be made as accurate and reliable as feasibly possible.

Authentication is an access control mechanism that is based on user identity. It

comprises two processes (Gar�nkel et al., 2003):

1. Identi�cation: the naming or labeling of an identity, providing the means to

distinguish that identity from among a set of similar identities. For example

on a computer system, legitimate users are given a unique username by which

the system di�erentiates them from other legitimate users of the system.

2. Veri�cation: the process of con�rming the veracity of a claimed identity. For

example on a computer system, a unique veri�cation token (with direct corre-

spondence to each username) is intended to verify the identity of a legitimate

user. The veri�cation process entails comparison of a stored or registered to-

ken, for a legitimate user, with a query token provided by the claimant during

the authentication procedure.

Only when identity is established and con�rmed�via the veri�cation process�is

authentication granted.

For the initial authentication procedure to be trusted, it must achieve both of

the following goals (Schneier, 2000):

1. It must grant all authorised identities access to the system.

2. It must deny all unauthorised identities access to the system.
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Traditional methods for the initial authentication procedure are based on (Umphress

and Williams, 1985):

• What a user knows (i.e. knowledge of a veri�cation token such as a password).

• What a user has (i.e. possession of a veri�cation token such as a key or an ID

card).

The password is by far the most common veri�cation token used in initial au-

thentication procedures (Joyce and Gupta, 1990; Gar�nkel et al., 2003; Zhang et al.,

2009), with many organisations widely adopting (and being heavily dependent upon)

this method. This is because a password-based authentication procedure is cost ef-

fective to implement, making use of the existing infrastructure of the computer

system. Also, the veri�cation process involved is a simple comparison between char-

acter strings (more precisely, the hashed values of the passwords).

Unfortunately, passwords su�er from the following major weaknesses:

1. Users typically choose passwords that are low in entropy (i.e. randomness),

because they are easier to remember; high entropy passwords are di�cult for

users to remember (Schneier, 2000). Passwords that are low in entropy become

more predictable, and thus more guessable. Also, if there are an insu�cient

number of characters (of low entropy), the password may be easily cracked by

brute force processing. Attackers using powerful computers and sophisticated

cracking methods, might conduct o�ine attacks on stolen password �les and

crack weak passwords very quickly.

2. Even when users choose passwords that are higher in entropy, it is common for

them to be written on paper and left in the vicinity of their computer desk.

Though this makes it more convenient for users to remember high entropy

passwords, it makes them vulnerable to loss or theft.

3. Very often, users will use the same password for accounts on di�erent computer

systems (Zhang et al., 2009). So if a legitimate user password on one system

is compromised, an attacker may be able to use it to access other systems on

which that user has an account.



8 CHAPTER 1. INTRODUCTION

In the CSI Computer Crime and Security Survey (2009), password related vulner-

abilities rated 6th, of 7 major types of attack experienced by respondents, account-

ing for 17.3%. Other types of attacks were malware infections (64.3%), laptop theft

(42.2%), and insider abuse (29.7%) (CSI, 2009). Though not the largest percent-

age, password related vulnerabilities remain a signi�cant cause of security system

breaches.

Other veri�cation tokens such as keys and ID cards can also be easily lost or

stolen. Therefore, the token-based authentication procedure continues to be one of

the most widely exploited methods of compromising computer systems (Gar�nkel

et al., 2003). Once an attacker gains access to a computer system using a lost,

stolen or cracked token, they will inevitably attempt to elevate their authorisation

level. If successful, the con�dentiality and integrity of data on the system is open

to compromise.

As demonstrated in the CSI Computer Crime and Security Survey (2009), cir-

cumventing the initial authentication procedure is not the only way for an attacker

to gain unauthorised access to a computer system. However, use of other methods to

gain unauthorised access to computer systems is outside the scope of this discussion

(refer section 1.4).

The limitations of the traditional initial authentication procedure mean that

unauthorised persons may gain access to the veri�cation token and be incorrectly

authenticated. Therefore, there is no guarantee that knowledge or possession of the

veri�cation token truly con�rms identity (Monrose and Rubin, 2000). So contrary

to popular belief, initial authentication procedures do not actually verify identity;

they only verify the holder of the token, who may or may not be the legitimate

identity (Schneier, 2000).

Also of concern is that numerous computer system breaches are not discovered.

Even if they are, it is often di�cult to determine when the breach occurred or what

data may have been compromised. Attackers may even leave a `back-door' so that

they can gain access to the system again at a later date (using legitimate users

credentials).
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To remedy the de�ciencies associated with the traditional initial authentication

procedure, a method that is being increasingly researched is based on `what the user

is' (Umphress and Williams, 1985). This method is referred to as biometrics, and

may prove e�ective in improving upon the traditional authentication methods.

Biometrics are the physical traits and behavioural characteristics that are unique

to each individual. Familiar examples of biometric characteristics are a person's

signature, �ngerprints, and DNA. Less familiar examples are retinal/iris patterns,

voice/speech patterns, facial image patterns, hand geometry, and keystroke dynam-

ics. A detailed discussion of biometrics is presented in Chapter 2 section 2.2.

Human beings use biometrics for person recognition every day. When we meet

someone we know, we automatically assess features about the person. Firstly, we

identify them according to our recollection of certain features, then we verify by

closer scrutiny of those features. When we meet someone we have not met before,

we memorise features about the person, so that when we next meet them we have

information with which to make the comparison.

A computer based system using biometrics can only simulate, or model, human

capabilities for person recognition, and may not attain the same accuracy as a human

being does. The reason for this is that human beings have learned brain and memory

functions, and can easily integrate information from multiple senses. Computers are

limited in these capabilities.

In computer terms, the integration of information from multiple sources belongs

to the �eld of study known as data fusion. There are three paradigms and three

major level of fusion available for the integration of data from multiple sources.

The issues surrounding data fusion, including the paradigms and fusion levels, are

discussed in detail in Chapter 2 section 2.3.

In relation to biometrics, incorporating multiple sources of data for authenti-

cation purposes is known as multi-modal biometric authentication. Until recently,

most research in multi-modal biometrics have concentrated on combining data at

the decision or con�dence score levels (refer Chapter 2 section 2.3.2).
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The intention of this study is to fuse multi-modal biometric data at the feature

level. It has been proposed in the literature that feature level data is richer in

meaningful information, and should provide a more accurate and robust veri�cation

process. However, there are certain operational issues associated with this level of

fusion that require careful consideration and further research.

This study attempts to o�er some solutions to some of these operational issues,

in order to improve the accuracy and robustness of both uni-modal and mutli-modal

biometric authentication. It must be stated though, that there may be other viable

methods for dealing with these issues.

1.2.2 Objectives of the Study

As traditional authentication methods are responsible for a signi�cant proportion of

computer security breaches, this study attempts to improve the initial authentication

procedure by utilising biometrics in the veri�cation process.

Three research objectives were identi�ed:

1. To investigate the e�ective use of the biometric characteristic keystroke dy-

namics (refer Chapter 3 and Chapter 5 section 5.4), and to assess the results

in comparison to previous research in this �eld. To achieve this objective, raw

data are pre-processed to reduce the high degree of variability associated with

this biometric characteristic.

2. To investigate the e�ective use of the biometric characteristic �ngerprint recog-

nition (refer Chapter 4 and Chapter 5 section 5.5), and to assess the results in

comparison to previous research in this �eld. To achieve this objective (using

Arti�cial Neural Networks for classi�cation; refer section 1.5), and also to fa-

cilitate the third objective of the experiment (feature level data fusion), a new

representation method for �ngerprint features was developed to attain feature

vectors of a standard length for all �ngerprint samples for all participants.



1.2. MOTIVATION AND OBJECTIVES FOR THIS RESEARCH 11

3. To investigate the feature level fusion of data from the previously stated two

sources (refer Chapter 2 section 2.3 and Chapter 5 section 5.6), and to assess

the results in comparison to previous research in this �eld. To achieve this

objective, data alignment of the two data sets was necessary, as they have dif-

ferent units of measurement. A simple data alignment method was applied to

the �ngerprint data, to bring them into alignment with the keystroke dynamics

data.

These three objectives became the three phases of the experiment, as discussed

in section 1.5.

1.2.3 Research Questions

The research objectives outlined in section 1.2.2 give rise to the following research

questions:

1. Can the biometric characteristic keystroke dynamics (using feature selection to

remove noisy data) demonstrate enough accuracy�in comparison to previous

research in this �eld�to be considered an e�ective veri�cation token in a uni-

modal biometric authentication system?

2. Can the biometric characteristic �ngerprint recognition (using a new feature

representation method to provide standard length feature vectors) demonstrate

enough accuracy�in comparison to previous research in this �eld�to be con-

sidered an e�ective veri�cation token in a uni-modal biometric authentication

system?

3. Can feature level data fusion (using the feature vectors gained from points

1 and 2) demonstrate enough accuracy�in comparison to previous research

in this �eld�to be considered a better alternative in a multi-modal biometric

authentication system compared to such a system where decision or con�dence

score level fusion is utilised.

The next section 1.3 discusses the signi�cance or relevance of the research.
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1.3 Signi�cance Of The Research

This study is one of many into biometrics for authentication. The many biometric

characteristics achieve varying degrees of accuracy because of variations in instru-

ment accuracy, raw data format, data pre-processing, software accuracy, and the

uniqueness (between di�erent people) of the biometric characteristic under consid-

eration. Though some standards for data collection methods and veri�cation pro-

cesses have been introduced in recent years6, these e�orts are taking some time to

�lter into the biometric community (research and commercial).

As discussed in Chapter 2 section 2.2, biometric veri�cation systems rarely indi-

cate that two samples, taken from the same person at di�erent times, are a perfect

match. Instead the system only indicates the probability that two samples are from

the same person; that is, there is seldom absolute certainty. When making the �nal

veri�cation decision, it is crucial that the biometric veri�cation system attains the

most accurate probability score possible. This is particularly true when multiple

characteristics are being used.

Early studies involving multiple characteristics focused on fusing data at the

decision or con�dence score levels. More recent studies have attempted data fusion

at the feature level. The concepts of decision, con�dence score and feature level

fusion are discussed in Chapter 2 section 2.3.2.1.

Fusion at the feature level uses data closest to the raw data, and therefore is

richer in feature information (compared with the other levels). To attain the best

probability score, and thus take full advantage of the uniqueness of the biometric

characteristics, it stands to reason that utilising the richness of these features would

be advantageous. The experiment attempts to demonstrate this, and to develop a

methodology which is e�cient and scalable.

At the commencement of the current study, relatively little work had been done

on data fusion at the feature level. Fusion of data at this level requires combining

data from di�erent biometric characteristics in a way that the individual features of

6Refer to The Biometrics Resource Center Website sponsored by the National Institute of
Standards and Technology (NIST). Available at:
http://www.itl.nist.gov/div893/biometrics/standards.html
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each characteristic are truly represented. From an operational perspective, this poses

di�culties in relation to the additional processing required because of di�erences in

data format between the characteristics.

The signi�cance of the current investigation to the �eld of biometrics generally,

and multi-modal biometrics speci�cally, is as follows:

• It investigates two biometric characteristics (keystroke dynamics and �nger-

print recognition) independently of each other, to demonstrate that they can

provide an accurate alternative to traditional authentication methods. In or-

der to rigorously investigate these two biometric characteristics, the following

issues need attention:

1. A feature selection method should be employed to �lter `noise' from the

collected data, because of the known high variability of keystroke dynam-

ics raw data.

2. To facilitate classi�cation of �ngerprint feature data by Arti�cial Neural

Networks, a new �ngerprint representation method needs development;

this would also facilitate fusion of this data with keystroke dynamics data.

• It investigates multi-modal biometric authentication to demonstrate that it

provides additional accuracy improvements as well as a perceived robustness

to the veri�cation process.

• It investigates feature level data fusion to demonstrate that fusion at this level

o�ers improvement in accuracy over con�dence score level and decision level

data fusion, and thus the importance of using feature rich data.

What makes this research of particular signi�cance is the fusion of data at the

feature level. As discussed in Chapter 2 section 2.3.2.2, most research into multi-

modal biometrics has concentrated on performing data fusion at the con�dence score

level, where valuable feature data is lost in the processing. Even though fusion at

the con�dence score level provides better accuracy and robustness than uni-modal

biometric systems, the current study attempts to demonstrate that even better

accuracy gains can be achieved by fusion of data at the feature level.
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The methodology proposed in the current study should be generically applicable

to any number (and any type) of biometric characteristics, provided that the pre-

processing of raw data�to obtain the feature data�maintains data integrity.

1.4 Scope Of The Research

The scope of the research is restricted to biometric authentication. That is, to

improve the initial authentication procedure and thus reduce the probability of suc-

cessful attack via this mechanism. Other possible authentication procedures are not

investigated.

The choice of the two biometric characteristics used in the experiment was made

for demonstration of the rationale behind the experiment, and for convenience of

implementation. As discussed in Chapter 2 section 2.2 there are many biometric

characteristics available for this type of experiment. The results of this experiment

are claimed only for those characteristics implemented, though it could reasonably

be expected that other biometric characteristics may be used for the same purpose

(with the accuracy attained dependent on the actual characteristics chosen).

Feature level data fusion was investigated because researchers in this �eld have

long suspected that using feature level data would improve both accuracy and ro-

bustness. Again, the results of this experiment are claimed only for feature level

data fusion of the two biometric characteristics utilised, though it could reasonably

be expected that other biometric characteristics may be used for the same purpose

(with the accuracy attained dependent on the actual characteristics chosen).

As mentioned previously, there exist other avenues of attack for those attempting

to gain unauthorised access to computer systems. Some attack possibilities may be

due to:

• Exploitable vulnerabilities. As mentioned in section 1.1, vulnerabilities exist

on most computers and computer networks. In the case of computer networks,

these vulnerabilities are exploitable remotely and with a degree of anonymity.

As evident from the seemingly endless number posted on vulnerability web-

sites7, these vulnerabilities a�ect computers with di�erent operating systems

7Such as: US-CERT available at http://www.kb.cert.org/vuls/ and Security Focus available at
http://www.securityfocus.com/vulnerabilities
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and many di�erent components and applications. Very often patches are avail-

able to �x vulnerabilities, but users or system administrators are often not

diligent in applying those patches.

• Human fallibility:

� Social engineering remains one of the most prevalent means of informa-

tion leakage. The celebrated case involving the �hacker� Kevin Mitnick

provides a very good example of social engineering. Mr Mitnick attributes

the majority of his success to social engineering skills rather than com-

puter �hacking� skills (Mitnick and Simon, 2002). For example, he was

able to obtain passwords and other secret information by impersonating

someone else and just asking for it (Schneier, 2000).

� Careless employees. Often employees do not realise the sensitivity of the

data or resources that they are working with each day. Many have a

lax attitude toward computer security because they are unaware of the

importance of their actions in relation to the protection of their em-

ployers physical and intellectual property. Also, middle and higher level

managerial sta� may not be as careful as they should be with technolog-

ical secrets, and leak important information to unauthorised employees

in order to `get the job done'. In a recent survey, 51% of respondents

attributed security events to internal sources (CSO, 2010).

� Disgruntled or mischievous employees (either current or past) can often

be in possession of information about an employers sensitive property.

If they believe they have cause, they could either attempt disruption

themselves or pass on information to others who might have a vested

interest in doing so.

The experiment performed for this dissertation makes no attempt to solve or

discuss these issues beyond that already mentioned.

The next section summarises the research method used for the experiment.
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1.5 Experimental Method And The Rationale For

Its Selection

The research began with a thorough literature review to identify the most appropri-

ate way to carry out a set of practical experiments testing biometric authentication

approaches, with a relatively large number of participants.

The methodology adopted for all three phases of the experiment was strongly

in�uenced by the intention to utilise Arti�cial Neural Networks (ANNs) for pattern

recognition. ANNs and their suitability for pattern recognition are discussed in

Chapter 2 sections 2.4.2 and 2.4.3 respectively. ANNs require input vectors of a

consistent length, so for each phase feature vectors were required to be of a consistent

length.

With this requirement in mind, feature selection was applied to the keystroke

dynamics raw data to obtain feature vectors of the same length. Feature selection

was employed to reduce the e�ects of the known variability that exists in keystroke

dynamics raw data. Therefore, all keystroke dynamics feature vectors (for all sam-

ples for all participants) were processed to a length of 24 elements. The process is

described in detail in Chapter 5 section 5.4.

For the �ngerprint recognition phase, a new representation method for �nger-

print features was developed to meet the requirement for consistent length feature

vectors. This new representation method was also required to facilitate the data

fusion phase, where the combined feature vectors (composed of the feature vectors

from the previous 2 phases) needed to be of the same length.

The new representation method involved identifying (for each participant) 8 local

�ngerprint features common to each of their samples. Six attributes for each of the

identi�ed 8 local �ngerprint features were recorded, two of which speci�ed their

location (i.e. the x and y coordinates in a two dimensional plane). Therefore, all

�ngerprint feature vectors (for all samples for all participants) were processed to a

length of 52 elements. The process is described in detail in Chapter 5 section 5.5.
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By simple normalisation, data alignment was achieved between the keystroke

dynamics feature vectors and the �ngerprint feature vectors. The combined feature

vectors were then used in the data fusion phase of the experiment. Two approaches

for the data fusion phase were investigated: the complementary paradigm and the

cooperative paradigm.

The complementary approach utilised 100% of data in the combined feature vec-

tors (i.e. all of the features from both biometrics). Therefore, all data fusion feature

vectors (for all samples for all participants using the complementary paradigm) were

processed to a length of 76 elements. The process is described in detail in Chapter

5 section 5.6.2.

The cooperative approach utilised the `best' features from the combined feature

vectors (i.e. selected features from both biometrics). This raises three questions

(keeping in mind the requirement of a consistent length for the �nal combined feature

vector):

1. What percentage of the 100% of data in the combined feature vector should

be used?

2. What proportion of features from the original feature vectors of each biometric

characteristic should be used?

3. What feature selection method should be used?

The processes involved in developing solutions to these questions are described

in detail in Chapter 5 section 5.6.3.

The experiments were designed on this basis and successfully carried out using

90 participants (see Chapters 5 and 6), producing very satisfactory results (see

Chapters 7 and 8).

1.6 Outline Of This Dissertation

The next chapter provides a review of three subject areas directly associated with

the experiment conducted for this dissertation. Biometrics is discussed in Chapter

2 section 2.2. Data fusion and multi-modal biometrics are discussed in Chapter 2

section 2.3 (including a review of literature related to multi-modal biometrics in
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section 2.3.2.2). Pattern recognition and Arti�cial Neural Networks (ANNs) are

discussed in Chapter 2 section 2.4.

Chapter 3 provides a detailed discussion of the biometric characteristic keystroke

dynamics (including a review of literature related to keystroke dynamics in section

3.4). Chapter 4 provides a detailed discussion of the biometric characteristic �nger-

print recognition (including a review of literature related to �ngerprint veri�cation

in section 4.5).

Chapter 5 describes in detail the research methodology and the implementation

of the three phases of the experiment. Section 5.4 discusses the keystroke dynam-

ics phase, section 5.5 discusses the �ngerprint recognition phase, and section 5.6

discusses the feature level data fusion phase.

In Chapter 6 the method used to classify the outputs from ANN testing is dis-

cussed, and the results are then presented in section 6.4. Chapter 7 then discusses

these results in depth, comparing each phase with the other and with other research

e�orts in their respective �elds.

Chapter 8 provides a conclusion to the dissertation, including discussion of the

key �ndings, limitations of the research, and potential future research directions.

1.7 Conclusion

In this chapter, some important aspects of computer security were highlighted in

section 1.1. One of these aspects was authentication, and improving the initial

authentication procedure was the overall focus of this dissertation.

Section 1.2.1 introduced the motivation for the research, which is related to

problems associated with the traditional authentication procedure. Biometrics was

introduced as o�ering a possible alternative to the traditional authentication pro-

cedure. The objectives of the study were then outlined in section 1.2.2, and the

research questions were posed in section 1.2.3.

The signi�cance or relevance of the study was discussed in section 1.3. Section

1.4 discussed the scope of the research, and section 1.5 summarised the research

method.

Finally, section 1.6 provided a outline of the remainder of the dissertation.



Chapter 2

Background

2.1 Introduction

A number of associated areas of study impact on, or are utilised in, the work de-

scribed in this thesis. These areas include biometrics, data fusion and multi-modal

biometrics, and pattern recognition and Arti�cial Neural Networks (ANNs). This

chapter discusses these areas of study, and provides background on them to help

understand why certain choices were made during the experimental stage of the

study.

Consequently, background will be given on the following topics:

• Biometrics: the personal characteristics used for authentication (section 2.2).

This section discusses the following topics:

� An overview of biometrics (section 2.2.1), where de�nitions for biometrics

and biometric technologies are given.

� The components of a biometric authentication system; what a biometric

authentication system is intended to achieve; the requirements that it

should meet; and how it operates (section 2.2.2).

� Biometric system errors and performance variables used to present ex-

perimental results (section 2.2.3).

� A description of well known biometric characteristics for possible use in

a biometric authentication system is also given in section 2.2.4.

19
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• Data Fusion and Multi-Modal Biometrics (section 2.3):

� Data Fusion: the integration or merging of data from multiple sources

(section 2.3.1).

� Multi-Modal Biometrics: the use of multiple personal characteristics used

for authentication (section 2.3.2).

• Pattern Recognition and Arti�cial Neural Networks (section 2.4):

� Pattern Recognition: techniques for classifying data based on extracted

information (section 2.4.1).

� Arti�cial Neural Networks: a particular pattern recognition technique

used in the experiment of the current study (section 2.4.2).

2.2 Biometrics

2.2.1 Overview of Biometrics

According to Webster's dictionary (Websters, 2010a), there are two de�nitions for

biometrics. In biology, biometrics refers to the science and technology of measuring

and statistically analysing biological data. In information technology, biometrics

refers to measuring and analysing human body characteristics for authentication

purposes. In this latter context, biometrics is often termed biometric authentication.

Re�ning this de�nition, biometric authentication concerns using the physical

traits and behavioural characteristics that make each individual unique for authen-

tication purposes, and encompasses any personal characteristic that can be used to

uniquely verify a person's identity (Monrose and Rubin, 2000).

The distinction between establishing a person's true identity and verifying a

person's claimed identity needs clari�cation. Establishing a person's true identity

(i.e. lawful name) is the concern of law enforcement. For example, if a person

assumes three identities to defraud the social security department, the department

would strive to discover this, determine the person's real or lawful name, and take

the appropriate legal action.
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In information technology, verifying a person's claimed identity is the aim of the

initial authentication procedure (Wayman et al., 2005). Traditionally, this proce-

dure requires all legitimate users of a system to have possession or knowledge of a

veri�cation token. The token (for example, username and password) is presented to

the system at the time of attempted authentication (that is, logon), and the system

makes a comparison between the supplied token and a registered token for that user.

If they match, the user is authenticated; if not, access is denied.

In order to use biometrics for authentication, biometric technologies have evolved

to incorporate automated methods (usually performed by a computer) and the tech-

nical apparatus used to verify the identity of a person based on physiological and/or

behavioural characteristics (Wayman et al., 2005).

Biometrics technologies involve (Liu and Silverman, 2001):

• The capture of biological data from an individual.

• The extraction of uniquely identi�able features from that data.

• The processing of these features into a format that can be stored and later

retrieved. This format is referred to as the `registered template' or `reference

template' for that individual.

• The comparison or matching of the registered template with a template pro-

cessed from a sample provided at the time of authentication (referred to as a

`query sample').

Because biometric technologies are automated, when they are deployed into the

authentication procedure it is referred to as a `biometric authentication system'.

These systems can be based on one or multiple biometric characteristics. When one

biometric characteristic is employed, it is referred to as a `uni-modal biometric au-

thentication system' or more simply `uni-modal biometric system'. Often the term is

shortened further to `uni-modal biometrics'. When multiple biometric characteris-

tics are employed, it is referred to as a `multi-modal biometric authentication system'

or more simply a `multi-modal biometric system' or `multi-modal biometrics'.
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Uni-modal biometrics based on a single personal characteristic normally make

it di�cult for an impostor to impersonate a legitimate user. Logically, multi-modal

biometrics should make it even more di�cult for an impostor to impersonate a

legitimate user, as it requires impersonation of two or more characteristics.

The next section discusses biometric authentication systems.

2.2.2 Biometric Authentication Systems

A biometric authentication system is intended to authenticate people based on cer-

tain biometric characteristics. So, biometric authentication systems essentially op-

erate as a pattern recognition system (Jain et al., 2004). That is, features of a

biometric characteristic determine a distinct pattern for each person. Authentica-

tion is granted or denied on the basis of recognition of this pattern, in the data

supplied at the authentication stage.

It should be noted, that there are two broad categories of biometric characteris-

tics (Revett et al., 2007):

1. The physiological category pertains to physical attributes or traits that allow

for the measurement of a person's physiological features. Examples of such

biometric characteristics are local �ngerprint con�guration, retinal blood vessel

pattern, and iris pattern. The measurements of the physical attributes are used

to formulate quanti�able feature vectors.

2. The behavioural category pertains to a person's behavioural attributes or

traits, that again require measurement and quanti�cation. Examples of be-

havioural biometric characteristics are speech pattern, signature, and typing

pattern.

When implemented into a biometric authentication system, the physiological

biometric characteristics are generally considered to be much more accurate, reliable,

and robust in comparison to the behavioural biometric characteristics (Revett et al.,

2007). There is good evidence for this perception, as will be discussed in section

2.2.4. However, physical biometric characteristics have the following disadvantages

(Revett et al., 2007):
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• Measuring devices for physical biometric characteristics are subject to electro-

magnetic interference (noise), and natural wear and tear. This could reduce

the e�ciency and accuracy of their use.

• The measuring devices, and the software to interact with them, are typically

costly to deploy. This makes it di�cult to utilise physiological biometric char-

acteristics for general remote transactions (for example, in web based applica-

tions such as online purchasing or banking).

• Some physiological biometric characteristics would be considered by users as

intrusive. For example, to use iris and retinal patterns, photographing or

scanning the eye in very close proximity is required, and users may �nd this

uncomfortable and inconvenient.

Though the behavioural biometric characteristics have an advantage in that they

do not su�er from the limitations associated with the physiological biometric char-

acteristics, they do su�er from the following disadvantages (Revett et al., 2007):

• Their attributes or traits are more di�cult to precisely measure and quantify

than the physiological biometric characteristics. Thus they typically demon-

strate much more variability.

• Their attributes or traits are not as enduring. That is, they are more subject to

change over short periods of time, for example because of attitude or tiredness.

• Because of the two previous points, behavioural biometric characteristics are

considered less accurate, reliable, and robust in comparison to the physiological

biometric characteristics.

So both categories of biometric characteristics have their advantages and dis-

advantages, and the selection of which characteristic to utilise in a biometric au-

thentication system will be dependent upon the intended application. Therefore,

it is possible for any characteristic from either category to be e�ectively deployed,

provided appropriate procedures are put in place to minimise the e�ects of any

disadvantages, and thus ensure the security of the system.
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A generic uni-modal biometric authentication system (illustrated in Figure 2.1)

consists of four modules (Ross and Jain, 2004; Faundez-Zanuy, 2009):

1. The sensor or biometric capture module. This is the module responsible for

capturing the physical or behavioural traits of the particular biometric char-

acteristic under observation.

2. The feature extraction module. This module processes the raw captured data

by extracting the features that represent the traits of the biometric charac-

teristic. The extraction of features forms the feature vector that is output by

this module.

3. The matching module. This module utilises a classi�er to ascertain if the

extracted features, of the biometric characteristic under observation, match

those of the registered template in the database. The module typically outputs

a match con�dence score, being the likelihood or probability that the two

samples match.

4. The decision module. This module uses the con�dence score to determine

the �nal classi�cation decision. As biometric samples rarely match exactly, a

threshold is typically applied in this module to make the �nal decision.

Figure 2.1: The Generic Biometric Authentication System
The image was sourced from Faundez-Zanuy, 2009.

To incorporate biometrics into an authentication system, the measurement of

any biometric characteristic must meet the following requirements (Matyas Jr and

Riha, 2000; Jain et al., 2004):
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• Universality: each person (in the target user group) should have the character-

istic. Some characteristics may be encumbered by physical disabilities, such

as muteness or eye disease.

• Uniqueness or Distinctiveness: any two persons should be su�ciently di�erent

in terms of the characteristic. For example, identical twins each have unique

�ngerprints, yet they cannot be distinguished by their DNA.

• Permanence: the characteristic should be su�ciently invariant (with respect

to the matching criterion) over a relevant period of time. For example, iris

features remain stable for decades, whereas facial features change signi�cantly

with age and �ngerprint features can be degraded by scaring, abrasion or

prolonged use of cleaning chemicals.

• Collectability: obtaining the characteristics should be easy, and they must be

quantitatively measurable. For example, retinal scanning requires the use of

expensive apparatus and the collection process requires precise positioning of

the eye. This makes collectability cumbersome, whereas keystroke dynamics

only requires that the user has the ability to type (even with only one �nger)

on a standard computer keyboard.

The following are also required for a practical implementation of an authentica-

tion system:

• Performance: the system must have the resources needed to attain an achiev-

able recognition accuracy and speed for the intended number of user pro�les.

The system must also compensate for operational and environmental factors

that may a�ect accuracy and speed.

• Acceptability: the extent to which people are willing to accept the use of a bio-

metric characteristic (for authentication purposes) in their daily lives. Facial

recognition is considered an acceptable biometric because people are accus-

tomed to having their photographs taken, and the process in non-intrusive.

However, retinal scanning requires the eye to be held in a constant posi-

tion while an infrared laser beam is directed through the cornea of the eye.
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Most people would �nd this highly intrusive, and others would not want laser

beams �red into their eyes.

• Circumvention: the system must be su�ciently robust to withstand various

fraudulent methods of attack. From a security perspective, low circumvention

would be considered highly desirable.

A biometric authentication system typically incorporates two phases (Jain et al.,

2004):

• Enrolment phase: This phase involves the capture, feature extraction, and

formation and storage of a registered template for each legitimate user of the

system. Quality checks must be performed during the enrolment phase, to

ensure that the acquired samples can be accurately and reliably processed.

• Validation phase: This phase has two modes:

� Veri�cation mode: the system validates a person's claimed identity, by

comparing their pre-stored registered template with a template derived

from a sample provided by the claimant at the time of attempted authen-

tication (termed a `query' or `test' sample). The process of obtaining the

query template must be the same as that employed in the formation of

the registered template (during the enrolment phase). Veri�cation is a

one-to-one operation, aimed at preventing multiple people from using the

same identity.

� Identi�cation mode: the system identi�es an individual by searching a

database of registered templates, and comparing their query template

with all templates in the database. Identi�cation is a one-to-many oper-

ation, aimed at preventing a single person from using multiple identities.

The next section discusses the performance variables used to measure�and

present results�of a biometric authentication system. Also discussed, are the com-

mon system errors associated with a biometric authentication system.
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2.2.3 Biometric Performance Variables and System Errors

In an empirical study where classi�cation is being assessed (in the case of biometrics,

veri�cation accuracy), there are four possible outcomes1 (Bradley, 1997; Fawcett,

2006; Flach, 2004):

1. True positive. The sample of a valid user is correctly accepted as belonging to

that user.

2. False positive. The sample of a non-valid user, is incorrectly accepted as

belonging to a valid user. This is referred to as a Type I error.

3. True negative. The sample of a non-valid user, is correctly rejected as not

belonging to a valid user.

4. False negative. The sample of a valid user, is incorrectly rejected as not be-

longing to that user. This is referred to as a Type II error.

In experiments related to authentication, it is the error in classi�cation that is of

interest. Therefore, classi�cation outcomes 2 and 4 above (i.e. Type I and II errors)

are measured by the following rates:

• The rate at which non-valid users are falsely accepted as valid users. That is,

false positives or Type I errors.

• The rate at which valid users are falsely rejected. That is, false negatives or

Type II errors.

The two performance variables used to express these rates are generally termed

the False Acceptance Rate (FAR) and the False Rejection Rate (FRR) respectively2.

Thus, the FAR is expressed as the ratio of samples from non-valid users that are

falsely accepted, and the FRR is expressed as the ratio of samples from valid users

that are falsely rejected.

1These classi�cation outcomes are discussed in greater detail in Chapter 6 section 6.2.1.
2In some literature, these are termed the False Match Rate (FMR) and the False Non-Match

Rate (FNMR) respectively.
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In a typical authentication system, the primary concern is to minimise access

to the system by non-valid users. The degree of minimisation will be dependent

on the nature of the information being protected. For example, the military may

have top secret information to be protected, and would insist on eliminating any

unauthorised access. However, in achieving zero tolerance access, valid users may

be inconvenienced by being falsely rejected numerous times.

In the case of a top secret system, this may be considered an acceptable trade-o�.

In contrast, a home computer used by family members would not necessarily require

the same level of restriction, and numerous false rejections may be considered an

unreasonable inconvenience.

In an experiment, the ultimate goal when evaluating veri�cation accuracy is to

achieve a FAR of 0%. Such a rate means that no non-valid user has been accepted

as a valid user, and indicates that the experiment performed to the highest expec-

tations. The goal for the FRR is to achieve a rate that is appropriately low without

negatively impacting on the FAR. Previous research has shown that a FRR of 0%

is di�cult to attain without having some detrimental e�ect on the FAR (Maltoni

et al., 2003; Qi and Wang, 2005).

As an example, a FAR of 0.4% and a FRR of 5% indicates that four in one thou-

sand non-valid users could expect to be successful in gaining unauthorised access,

while a valid user could expect to be rejected once in twenty attempts. Reducing

the FRR to 1% would mean a valid user could expect to be rejected only once in

one hundred attempts. However, this may, for instance, increase the FAR to about

2.5%, which means that twenty �ve in one thoudand non-valid users could expect to

be successful in gaining unauthorised access. This would not generally be considered

a wise trade-o�.

In practice, no biometric authentication system can be expected to absolutely

verify the identity of an individual (Matyas Jr and Riha, 2000). For example, a

password system involves the comparison of the hashes of two passwords (one being

the query sample and one being the registered template in a database). If there is

an exact correspondence, veri�cation is con�rmed.
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However, a biometric system can only indicate the likelihood or probability that

two samples are from the same person. This is because biometric characteristics

are determined by sensors, and there are various factors associated with human

interaction with sensors that a�ect the accuracy of sensor readings. This means

that two biometrics samples from the same person are most unlikely to be absolutely

identical.

Some of the error rates that re�ect or impact on this uncertainty are (Maltoni

et al., 2003; Nandakumar, 2008):

• Failure To Capture Rate (FTCR): the percentage of times that a biometric

capture device fails to automatically capture the intended biometric trait. This

usually occurs as a result of poor quality or malfunctioning sensing devices.

• Failure To Enrol Rate (FTER): the percentage of times that users of the

biometric authentication system are unable to enrol in the system. This may

occur as a result of quality control checks on the enrolment procedure, a poor

quality or malfunctioning sensor, inappropriate interaction between the user

and the sensor, or other environmental factors (such as ambient conditions,

background noise, etc.).

• Equal-Error Rate (EER): denotes the (classi�cation) error rate�at a given

threshold t�where the FAR and the FRR are equivalent. Though this may

seem to be an ideal trade-o� point (that is, an appropriate point of equal

accuracy between the performance metrics), for authentication purposes this

is seldom the case. Most often the threshold requires adjustment to provide a

more stringent control over the FAR.

The next section provides an overview of the di�erent biometric characteristics

that are available for use in a biometric authentication system.
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2.2.4 Biometric Characteristics

Any discussion of the validity and utility of di�erent biometric characteristics should

be carried out in relation to the requirements of any particular biometric authentica-

tion system (refer section 2.2.2). Table 2.1 summarises the common candidate bio-

metric characteristics and nominates the usual levels of achievement (high, medium,

or low) of the generic system requirements (discussed in section 2.2.2), for each char-

acteristic. In Table 2.1, H represents a high rating, M represents a medium rating,

and L represents a low rating.
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DNA H H H L H L L 0.81
Facial Recognition H L M H L H H 0.67
Iris Pattern Recognition H H H M H L L 0.86
Retinal Pattern Recognition H H H L H L L 0.81
Speaker Recognition M L L M L H H 0.52
Fingerprint Recognition M H H M H M M 0.81
Palmprint Recognition M H H M H M M 0.81
Hand Geometry M M M H M M M 0.71
Keystroke Dynamics M M L H M M M 0.71
Signature Recognition M L L H L H H 0.57
Gait Recognition M L L H L H M 0.62
Body Odor Recognition H H H L L M L 0.71

Table 2.1: Summary of Utility Biometric Characteristics for Authentication Systems

In most cases, the achievement levels presented for the candidate biometric char-

acteristics are based on those proposed by Jain et al. (2004), although the following

slight modi�cations have been made to some of their proposed achievement levels.

In the opinion of the author the universality achievement levels o�ered by Jain et

al. (2004) in relation to keystroke dynamics and signature recognition are unfairly

represented. As an example, it is true that the ability to type or write a signature

would de�nitely be a�ected by injury to, or loss of, a �nger. However, it is just as

true that �ngerprint recognition would be equally a�ected by such an occurrence.

In both cases, this should not permanently a�ect a person's ability to perform the
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necessary task involved. Therefore, the levels allocated to keystroke dynamics and

signature recognition (for universality), in Table 2.1, have been modi�ed to `medium'

rather than the `low' value allocated by Jain et al. (2004).

Also in the opinion of the author, the `low' level allocated to keystroke dynamics

for distinctiveness and performance, by Jain et al. (2004), seems unfairly representa-

tive. The literature review in Chapter 3 section 3.4 demonstrates that this biometric

characteristic is distinctive enough�and performs well enough if data is carefully

pre-treated�to be allocated a higher level of achievement. Accordingly, a `medium'

level has been allocated to these system requirements for keystroke dynamics.

Collectability of keystroke dynamics should in the author's opinion be allocated

a `high' value, as a keyboard is a standard peripheral device on most computers and

computer users would perform the majority of their interaction with a computer via

a keyboard.

A rating column has been included in Table 2.1, to help assess the overall viability

of each characteristic. The rating score for each characteristic was calculated as

follows:

• A High rating was assigned a value of 3, Medium a value of 2, and Low a value

of 1.

• The sum of assigned column values, for each biometric characteristic, was

divided by the highest possible score of 21.

An exception to this scoring scheme was that applied to `Circumvention'. As a

low degree of circumvention is desirable, the complementary values are assigned to

Low and High. That is, Low was assigned a value of 3, High a value of 1.

It is important to note that although the rating is provided to 2 decimal places

(to permit close alternative methods to be distinguished), it is only approximate as

the rating scale is crude and there has been no attempt to weight the criteria.

A description of each of the biometric characteristics identi�ed in Table 2.1 fol-

lows, except for Keystroke Dynamics and Fingerprint Recognition which are only

discussed brie�y. These two characteristics were utilised in the current study, and

consequently are discussed in detail in Chapters 3 and 4.
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The �rst characteristic for discussion is provided as a counter example, because

it rates highly in the requirements for a biometric authentication system, but to

date has not (to the author's knowledge) been used in such a system.

2.2.4.1 Deoxyribonucleic Acid (DNA)

According to Webster's dictionary (Websters, 2010b), DNA is a �complex molecule

found in the chromosomes of almost all organisms, which acts as the primary genetic

material; the part of the cell nucleus that is the repository of hereditary characteris-

tics.� That is, it contains the genetic instructions for the development and function

of almost all living organisms. In animals and plants these genetic instructions are

present in every cell nucleus.

DNA is unique to each individual and is therefore a unique identi�er. However,

DNA has mostly been used in forensic science and biological research, because the

following limitations have restricted the use of DNA for biometric authentication

systems (Jain et al., 2004):

1. A persons DNA can be unsuspectingly obtained. For example, from a drink

can or glass. Another person could then use this DNA sample for false au-

thentication.

2. Information about a person's genetic information could be abused. For ex-

ample, if a prospective employee has a hereditary condition, an employer who

gains knowledge of this may use that knowledge to discriminate against the

person in their employment opportunity.

3. DNA is currently unsuitable for real-time applications because of the process-

ing (chemical and machine) and time involved to match samples.

4. The human factor in processing opens up the possibility of sample contam-

ination or degradation that could impact on the accuracy of the matching

process.

DNA technology also di�ers from standard biometric technologies in several ways

(International Biometric Group, 2006):
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• It requires a tangible physical sample as opposed to an impression, image, or

recording.

• The matching process is not done in real-time, and currently not all stages of

comparison are automated.

• The matching process does not employ templates or feature extraction, but

rather represents the comparison of actual samples.

More recently, the National Institute of Standards and Technology (NIST) has

developed a research team to further research the applicability of DNA in biometric

authentication (National Institute of Standards and Technology, 2010a).

2.2.4.2 Facial Recognition

Facial recognition is used by humans each day to recognise acquaintances (Jain

et al., 2004). In an authentication system, a camera is used to obtain an image of

a face. From an acceptability perspective, this is non-intrusive because most people

are accustomed to having their photographs taken.

A common approach to facial recognition, which is easily understood, is based

on the shape, location and spatial relationship of facial attributes such as eyes,

eyebrows, nose, lips, and chin (Jain et al., 2004). For a biometric authentication

system, identi�able points associated with facial attributes are determined, and

the distances between these points measured. There are about 80 measurements

attainable, however, only 14 to 22 are required for the facial recognition system.

Some measurements include:

• Distance between eyes.

• Width and length of nose.

• Depth of eye sockets.

• Distance between cheekbones.
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• Distance between points on the jaw line.

• Distance between points on the chin.

Another approach to facial recognition is based on the overall (global) analysis

of the facial image, where the facial image is represented as a weighted combination

of a number of formulary faces (Delac and Grgic, 2004).

Possible changes in the following aspects of image capture, are potential limita-

tions associated with the capture of the facial images:

• Facial expression.

• Orientation of the face (in relation to the camera).

• Distance from the camera.

• Location background.

• Ambient lighting conditions.

Without suitable control of such contextual information, there is doubt if current

facial recognition techniques can provide person recognition to an acceptable level

of con�dence (Jain et al., 2004). However, research in this �eld is yielding ever more

robust and accurate systems.

2.2.4.3 Iris Pattern Recognition

The iris is the coloured ring of textured tissue between the pupil and the white of

the eye (Matyas Jr and Riha, 2000). The formation of each iris is stabilized by the

age of two, and even twins have di�erent iris patterns. Irises can only be altered

by surgery, and it is therefore very di�cult to impersonate someone based on this

characteristic.

This textured tissue of the iris possesses a unique mesh-like structure of features

forming a complex pattern (Daugman, 2004). The pattern can contain some of the

following features: arching ligaments, ridges, crypts, corona, freckles, pits, furrows,

straights, and rings.
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Iris recognition uses pattern recognition techniques based on high-resolution im-

ages of an individual's eyes (Matyas Jr and Riha, 2000). The image is captured by

a camera positioned directly in front of the eye at a distance of 10 to 40 cm. Subtle

infrared illumination reduces specular re�ection from the convex cornea to create

images of the intricate structures of the iris.

Algorithms required for image acquisition and one-to-many matching (i.e. identi-

�cation) were pioneered by John G. Daugman, PhD, OBE (University of Cambridge

Computer Laboratory). After isolating the iris, each iris pattern is demodulated

to extract its phase information using quadrature 2-D Gabor wavelets (Daugman,

2004). The encoding process amounts to a patch-wise phase quantization of the iris

pattern, which determines an `iriscode' that characterises the iris. This iriscode can

be used for both identi�cation and veri�cation processes.

Iris recognition is considered reasonably non-intrusive, relatively simple to collect

samples, and has demonstrated high levels of accuracy for both identi�cation and

veri�cation purposes (Matyas Jr and Riha, 2000). The iris pattern remains stable

over ones lifetime, however, the iris is subject to several diseases which would void

the use of this biometric characteristic by those persons a�ected. One other possible

limitation associated with iris recognition may be the expense of software for iris

detection and pattern recognition; one company holds all world-wide patents on iris

recognition concepts including those developed by Daugman.

2.2.4.4 Retinal Pattern Recognition

According to Webster's dictionary (Websters, 2010c), the retina is the multilayered

light-sensitive membrane lining the inner posterior chamber of the eyeball. The

human retina is stable from birth to death, apart from the action of diseases. It

receives images produced by the lens, converts them into chemical and nervous

signals which reach the brain by way of the optic nerve.

The arrangement of blood vessels in the retina forms a rich pattern that is unique

for each eye of each individual (Jain et al., 2004). This pattern is claimed to provide

the most secure biometric, as it is very di�cult to change or replicate the retinal

pattern.



36 CHAPTER 2. BACKGROUND

Retinal pattern recognition has the highest performance accuracy of any of the

biometric characteristics, estimated to be in the order of 1:10,000,000. Unlike some

biometric identi�ers, such as �ngerprint recognition, retinal pattern recognition can-

not be fooled. The retina of a deceased person quickly decays and cannot be used

to deceive a retinal scan.

The main limitation of retinal pattern recognition is that the retinal scanning

process is highly intrusive (Matyas Jr and Riha, 2000). A subject must keep their

eye in very close proximity to the scanner, and keep their vision focused on a spe-

ci�c point for the duration of scanning. During scanning an infrared laser beam is

directed through the cornea of the eye. This level of intrusiveness is likely to be

acceptable only in situations where very high security access is required.

2.2.4.5 Speaker Recognition

Speech recognition or speech processing is a �eld of study concerned with recognising

what a speaker is saying (Markowitz, 2000). Speaker recognition is concerned with

the physiological characteristic of the human voice and the behavioural aspects of

speaking, that are unique to each individual. Researchers in the �eld of speech

processing consider the term voice recognition to be an erroneous term referring

to speaker recognition. As biometrics is concerned with identifying or verifying

a person's identity (in this case, the speaker), speaker recognition seems a more

accurate term and is henceforth used in this document.

The physiological characteristic of voice is dependent on the spatial characteristic

of the vocal tract, mouth and nasal cavities (Jain et al., 2004). A voice sample is cap-

tured by a conventional microphone, so this biometric characteristic is non-intrusive.

The sample is then processed and stored as a template called a `voiceprint'. Though

commercial systems have been available since the 1970's, the accuracy attained by

them still needs improvement (Matyas Jr and Riha, 2000).

The behavioural aspects of speaking are concerned with lip and jaw movement

during the act of speaking (Jain et al., 2004). Behavioural components of variation

can result from emotional state, medical condition, and changes as a result of aging.
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2.2.4.6 Fingerprint Recognition

A �ngerprint is produced when the bulbous region of a �nger tip makes contact with

another surface, thus creating a duplicate impression of the �nger tip (Faulds, 1880;

Galton, 1892).

The most prominent traits of a �ngerprint impression are caused by the papillary

ridges and the consequent valleys or furrows of the epidermal layer of the �nger.

These traits form a pattern (known as the ridge pattern) that is distinguishable to

the naked eye. There are also minute characteristics of the individual ridges (known

as minutia points or minutiae) that are not easily distinguishable.

There has been a large amount of research, producing a large body of literature,

concerning both identi�cation (�ngerprint classi�cation) and veri�cation techniques

for �ngerprint recognition. These issues are discussed in detail in Chapter 4 (Fin-

gerprint Recognition).

2.2.4.7 Palmprint Recognition

Like �ngerprints, palmprints contain ridges and valleys that form unique patterns for

each individual. As the palm is larger than a �nger, it is expected that palmprints

may consist of more features than �ngerprints and consequently be more distinctive

(Jain et al., 2004). However, palmprint scanners are much larger than �ngerprint

scanners, because they need to capture a larger area. This is a limiting factor for

their use at workstations and mobile devices (Matyas Jr and Riha, 2000).

There are two popular approaches to palmprint recognition. One approach is

to transform palmprint images into speci�c transformation domains. Techniques

such as gabor �lters, fourier transforms, and wavelets can be used to obtain salient

features. Another approach is to extract principal lines and creases from the palm

image, though this approach is not considered to be distinctive enough for authenti-

cation purposes (Connie et al., 2003). Also, extracting discriminatory line structures

is complex and di�cult; creases and ridges of the palm cross and overlap each other,

which complicates the feature extraction task.



38 CHAPTER 2. BACKGROUND

A recent research e�ort used the data from two and three dimensional palmprint

scans (captured simultaneously) (Li et al., 2010). The principal line and palm shape

features were extracted and used to accurately align the palmprint; matching rules

were de�ned that used the 2D and 3D features for e�cient recognition.

2.2.4.8 Hand Geometry

Hand geometry involves the measurement and analysis of a number of spatial at-

tributes of the human hand (Jain et al., 2004; Fong and Seng, 2009). Unlike �nger-

prints, the human hand is not unique. Individual hand features are not descriptive

enough for identi�cation. However, by combining various individual features and

measurements of �ngers and hands, it is possible to devise a method for veri�cation

purposes.

The hand attribute candidates include (Jain et al., 2004; Fong and Seng, 2009):

• The overall shape and dimensions of the hand and �ngers.

• The size of the palm.

• The lengths and widths of the �ngers.

• The location of joints on the �ngers.

The shape of a person's hand does not normally change signi�cantly after a

certain age, so this characteristic has a good permanence rating. However, hand

geometry is not known to be su�ciently distinctive to be considered suitable for a

biometric authentication system with a large population database (Matyas Jr and

Riha, 2000). Also, current hand geometry scanners can not detect whether a hand

is attached to a living person or not; therefore if the correct pressure is applied to

the scanning device, a fake hand can deceive the system (National Centre for State

Courts, 2006).

More recently, research into hand geometry has investigated hand contours. This

method matches registered and query templates according the �nger or palm contour

outline of a hand (Fong and Seng, 2009).
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2.2.4.9 Keystoke Dynamics

Keystroke dynamics is a behavioural characteristic that involves analysing a com-

puter user's habitual typing pattern when interacting with a computer keyboard

(Monrose and Rubin, 2000).

This biometric characteristic has been increasingly researched in the last 20 years,

because data collection is simpler and less expensive when compared to other char-

acteristics which rate higher in Table 2.1. The characteristic is not without its

downfalls however, and as keystroke dynamics is utilised in the research described

in this thesis, a detailed review of into this biometric characteristic is presented in

Chapter 3 section 3.4.

2.2.4.10 Signature Recognition

A signature is a handwritten, often stylized, depiction of someone's name that a

person writes on documents as a proof of identity. Signatures act as a seal, and

form a basis for non-repudiation in contract law.

In biometric technology, signature recognition is based on the dynamics of mak-

ing the signature (Matyas Jr and Riha, 2000). That is, veri�cation is not based on

what the signature looks like, but on the data collected about the writing process.

The signature is captured using a tablet and a special stylus which measures the

pressure, direction, acceleration and length of strokes, the number of strokes and

the duration.

Signatures are behavioural, so they can vary substantially between successive

instances, and may change over time (Jain et al., 2004). A factor that may limit the

acceptability of this biometric characteristic, is that the digitalised signature looks

slightly di�erent from a person's hand written signature. Also, the person cannot

see each character as they are writing.

More recent approaches do not require the use of a tablet and stylus, but employ

a video camera that is focused on the user writing on a piece of paper with a normal

pen (Impedovo and Pirlo, 2007). Parameters that may be used for veri�cation

(adopting this approach) are the signature image area, signature height and width,

length to width ratio, middle zone width to signature width ratio, and the number

of characteristic points.
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2.2.4.11 Gait Recognition

Gait analysis is the process of quanti�cation and interpretation of animal (including

human) locomotion (Boyd and Little, 2005). In the pathological �eld, the study of

gait analysis may re�ect bodily compensations for underlying symptoms, allowing

orthopaedic diagnoses to be made.

Gait analysis commonly involves the measurement of the movement of the body

in space (kinematics) and the forces involved in producing these movements (ki-

netics), and is widely used in professional sports training to optimise and improve

athletic performance.

In biometrics, gait is both a physiological and behavioural characteristic that

attempts to identify the speci�c way an individual walks (Jain et al., 2004). By

studying the variations in gait style this biometric can be used as an identi�er to

di�erentiate between individual people.

The classi�cation of gait style can be grouped into two categories of measurement:

1. Spatial-temporal. That is, step length, step width, walking speed, cycle time.

2. Kinematic. That is, the joint rotation of the hip, knee and ankle; the mean

joint angles of the hip, knee and ankle; and the thigh, trunk and foot angles.

Although human beings may use gait to help recognise people (often subcon-

sciously), it is not considered to be distinctive enough for an authentication system

(Jain et al., 2004). A limitation with this biometric is the complexity of dealing

with the spatial, temporal and kinematic measurements (in di�erent environments).

Also, it scores low in permanence because of changes to the physiological condition

of an individual's body over time.

2.2.4.12 Body Odor Recognition

Any organic body that exudes an odor constantly produces tiny quantities of molecules

that evaporate to produce the odorant (Korotkaya, 2003). So, body odor is a char-

acteristic of the changing chemical composition of the body.

In biometrics, measurement is achieved by recording data as a stream of odor

laden air is blown over an array of chemical sensors (Jain et al., 2004). Each sensor is
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sensitive to the di�erent properties of groups of aromatic compounds , and produces

a characteristic pattern for each odorant (Korotkaya, 2003). This is a non-intrusive

process, as the odor stream is usually taken from the back of the hand (Matyas Jr

and Riha, 2000).

A limitation with this characteristic is that there is variability in the quantity

of molecules produced at any given time; the body does not produce a steady odor

stream like sound waves. Also, collectability of this characteristic may be a�ected

by the use of soap or hand wash, and environmental conditions. Illness is also known

to a�ect body odor, which may cause occasional problems in terms of permanence.

2.2.4.13 More Detailed Discussion

As previously stated, Chapter 3 (Keystroke Dynamics) and Chapter 4 (Fingerprint

Recognition) discuss these two biometric characteristics in greater detail, because

they were used in the author's investigation into a multi-modal biometric system,

and so a more in-depth discussion was warranted.

The next section 2.3 provides an overview of data fusion and then discusses these

concepts in relation to multi-modal biometrics.

2.3 Data Fusion And Multi-Modal Biometrics

2.3.1 Data Fusion

Data fusion is the integration (merging or combining) of data from multiple sensors

or sources (Hall and Llinas, 1997). Multi-sensor data fusion is a relatively new

science, though the ideas and concepts behind it are not.

An analogy can be drawn between multi-sensor data fusion and the use of senses

by human beings and animals, who develop the ability to combine information from

multiple senses from an early age. Whereas the use of a single sense may provide

some useful information, the use of multi-sensory data can provide more meaningful

information, to more accurately assess environmental conditions for survival pur-

poses.
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From a survival perspective, reliance on a single sense would be imprudent be-

cause (Hall and Llinas, 1997):

1. Input from several senses provides more information that can be used for the

task at hand. For example: when assessing the quality of edible substances,

using a combination of taste, sight, smell and touch gives more meaningful

information than using sight or smell alone.

2. If any one of the senses becomes damaged, the others must be able to com-

pensate. An example of the development of compensatory skills is visually

impaired people, who are known to have more highly developed hearing skills

than the average person.

Thus, multi-sensory data fusion is naturally performed by humans and animals

to accurately assess their environment for threat identi�cation, to improve their

chances of survival. In the same way, merging data from multiple sensors/sources

improves accuracy of a data fusion system that can be applied to industrial processes,

medical diagnosis, and military applications (Hall and Llinas, 2001).

Using data from multiple independent sensors/sources, makes a system less vul-

nerable to the failure of a single source (Brooks and Iyengar, 1998). Provided the

fusion method is appropriate to the types of data, and is performed correctly, the

system should become more robust.

Combining data from several di�erent sources not only enables a system to at-

tain more accurate information than would otherwise be possible�and therefore

achieve more speci�c inferences than could be achieved by using a single indepen-

dent source�it also makes the system less sensitive to noisy data.

Decision making is most often dependent on di�erent sources of data related to

a given situation. This can introduce the problem of too much data and can lead

to information overload. A fusion system must combine data in such a way as to

remove the in�uence of inconsistent or irrelevant data, so that the best interpretation

of information is achieved. The resultant information can be stored in one coherent

structure.
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When properly processed, fusion combines inputs from multiple independent

sources of particular accuracy and reliability, to provide information of known ac-

curacy and proven reliability.

For data fusion systems utilising more than one data source, the fusion process

generally involves (Brooks and Iyengar, 1998):

• A sensor: an electrical or mechanical device that maps the values of some

environmental attribute to a quantitative measurement. In the current study,

the devices used were the standard computer keyboard and the �ngerprint

scanner3. Every sensor detects some aspect or attribute of the state of its

environment. This involves direct interaction with the environment. When no

change in environment is detected, the sensor is inactive; if change in environ-

ment is detected by the sensor, it becomes active and records the appropriate

data. Individual sensors are not totally reliable interfaces for several reasons:

� They have limited accuracy.

� They are subject to the e�ects of some type of `noise'.

� Under some conditions they will function incorrectly.

� Sensor interaction generally causes wear and tear on the device, eventu-

ally leading to component failure, inaccuracy or poor precision.

• Pre-processing: involves the processing of raw data�read from a sensor�into

a form that facilitates the fusion process. Tasks include; sensor re-calibration,

noise reduction, re-aligning skewed individual readings, edge detection, feature

detection, and possible treatment of features to produce a more manageable

form.

• Fusion: this process involves integrating readings from multiple independent

sources into a single reading/vector. The fused reading/vector will be in the

same form as the pre-processed data. The actual values utilised in the fusion

process may di�er from many or all inputs. The fusion process must be based

3For keystroke dynamics, time intervals in milliseconds between keystroke events were measured.
For �ngerprints, global and local features from the scanned grey-scale �ngerprint images were
extracted.
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on mathematically rigorous methods that avoid naively propagating errors in

the system. Statistical and deterministic fusion methods exist for this purpose.

• Interpretation: this process is task-speci�c and consists of �nding the best

�t possible for the data within the information requirements of the system.

Application areas include: aeronautics, biometrics, hazardous environments,

manufacturing, medicine, remote sensing, robotics, and tra�c control.

Each of the above steps is dependent on the results of the preceding step. Data

fusion attempts to overcome the limitations stated above�making the most of exist-

ing technology�by �nding ways to integrate data from multiple independent sources

and by appropriate handling of any discrepancies encountered.

The next section (2.3.1.1) discusses the paradigms for fusing data from multiple

independent sources.

2.3.1.1 Paradigms of Data Fusion

When fusing data from multiple sensors/sources, there are three standard data fusion

con�guration paradigms available for consideration (Brooks and Iyengar, 1998):

1. The Complementary Data Fusion paradigm is utilised where sensors or in-

dependent data sources do not depend on one another directly, but can be

combined to provide a more complete mapping of a region, physical attribute,

or aspect of an object.

• The sensors provide data covering di�erent regions, physical attributes,

or aspects of an object.

• Merged data provides an overall view of the whole region or object.

• Merging data can be simply achieved since no con�icting information is

present in the data (unless the regions overlap).

• Multiple sensors of the same type, or of di�erent types, may be deployed.

As an example, Figure 2.2 illustrates four radar sensors placed on each side

of a rectangular structure, with the sensors facing away from the structure.
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Each radar provides data regarding the region within its own scope. Their

views are in di�erent directions and although the data may be of similar nature,

they will illustrate di�erent geographical attributes. By merging or fusing all

views, a more complete view of the entire environment is attained.

Figure 2.2: Complementary Data Fusion Paradigm
The image was sourced from Brooks and Iyengar, 1998.

2. The Competitive Data Fusion paradigm is utilised where sensors or data

sources provide independent measurements of the same information about

a region, physical attribute, or aspect of an object. That is, they observe

the same region (or object) and provide their own data from those observa-

tions. They are competitive in that a data fusion system needs to decide

which sensor's data is to be accepted as the most correct. That is, has the

least discrepancies.

• Theoretically, the data from all sensors should be of identical nature.

• Merging data is challenging since is involves interpreting con�icting data.

• Competitive con�gurations are often used in mission critical situations to

provide better reliability or fault-tolerance in a system.
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• Competitive con�gurations generally cause accuracy and reliability to

increase.

As an example, Figure 2.3 illustrates four radar sensors placed on each side of

a (hollow) rectangular structure. However, this time the sensors are placed in

such a way as to be observing the inside area within the structure (though each

radar will observe from a di�erent perspective). Each sensor's data should de-

scribe their own perspective of the structure. The data with the least number

of discrepancies is chosen as the most representative. Sensor accuracy, sen-

sor perspective, and the time between readings make fusion problematic and

complex.

Figure 2.3: Competitive Data Fusion Paradigm
The image was sourced from Brooks and Iyengar, 1998.

3. The Cooperative Data Fusion approach is related to the competitive paradigm,

in that it is utilised where sensors or data sources provide independent mea-

surements of the same information about a region, physical attribute, or aspect

of an object. However instead of competing, data is combined in such a way

that information can be derived, that would be otherwise unattainable from

individual sensors/data sources.
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• This is a di�cult system to design because information sought is sensitive

to the inaccuracies associated with individual sensors.

• Cooperative con�gurations typically require determination of the speci�c

features (from each of the data sources) that best represent the region,

physical attribute, or aspect of an object. Thus feature selection may be

required to determine the most appropriate features (from each of the

data sources) to combine.

• Cooperative con�gurations may cause accuracy and reliability to de-

crease, if steps are not taken to ensure rigorous feature selection.

As an example, Figure 2.4 illustrates 2 video cameras observing the same

object from di�erent locations. The data from each will give information in

two dimensions. However, if the cameras' angle of separation is su�cient, the

combined data can provide information that infers three dimensions. That is,

gives the impression of depth.

Figure 2.4: Cooperative Data Fusion Paradigm
The image was sourced from Brooks and Iyengar, 1998.

In the current study, the complementary and cooperative paradigms were imple-

mented and tested (refer Chapter 5 section 5.6). The competitive paradigm was not

investigated because it was considered contrary to the purpose of the experiment.
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The fundamental premise for fusing data from multiple sources was to improve

accuracy and robustness in the authentication procedure. That is, a multi-modal

biometric authentication system should be harder to circumvent than a uni-modal

biometric authentication system.

In the competitive paradigm, a single data source is selected to represent a

region, physical attribute, or aspect of an object. Therefore, if this paradigm was

implemented in an authentication system, only one data source would be used�

resulting in a uni-modal biometric authentication system�which is at variance with

the intention of multi-modal biometric authentication.

The next section (2.3.1.2) discusses the levels at which data fusion may be per-

formed.

2.3.1.2 Formal Levels of Fusion

The �eld of multi-sensor data fusion has been applied primarily in the mathematical

and engineering �elds (Hall and Llinas, 1997). As such, the literature has seen

development of some formal speci�cations.

The discussion in this section deals with the formal speci�cation of three levels

at which multi-sensor data may be fused (Hall and Llinas, 2001):

1. Sensory Data Level. If the sensor/source data (from multiple sensors/sources)

are comparable�that is, sensors/sources are measuring the same physical

attribute/phenomena�then the raw data can be directly merged. Techniques

include classic estimation methods (such as Kalman �ltering). If the sen-

sor/source data are non-commensurate, then they must be fused at the feature

level or decision level.

2. Feature Level. This fusion level involves the extraction of representative fea-

tures of each sensor/data source. Feature data is processed into an appropriate

format and stored in individual feature vectors; these feature vectors are sub-

sequently fused. Pre-processing may entail the selection and extraction of

the `most' representative features from sensor/source data, before combining

them into a single feature vector. The ultimate success relies on the selection of
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`good' (appropriate) features (such features should provide excellent class sep-

arability in feature space). Selection of `poor' (inappropriate) features results

in large overlapping feature space areas for class objects. The resultant fea-

ture vector serves as input into pattern recognition techniques such as neural

networks, clustering algorithms, or template methods.

3. Decision Level. This fusion level involves the processing of the sensor/source

data from each source to achieve high level inferences, which are subsequently

combined. Sensor/source information are combined after each sensor/source

has made a preliminary determination based on independent data. That is,

this level of fusion entails the integration of decisions coming from di�erent

sensors/sources (Varshney, 1997). Decisions or inferences can be made based

on raw data or extracted features. Techniques include weighted decision meth-

ods (voting techniques), classical inference, and Bayesian inference.

Fusion levels applied to biometrics vary slightly in interpretation to the three levels

just discussed. The speci�c details are provided in the discussion in section 2.3.2.1.

As speci�ed in the title of this thesis, the aim of the study was to fuse data at

the feature level because it has been proposed that data fused at this level maintains

more discriminative information (than fusion at the decision level), and should thus

provide improved accuracy when applied to the authentication procedure.

The next section (2.3.1.3) discusses the di�erences in the nature of data, and the

treatment that needs to be performed on that data, for an acceptable fusion of data.

2.3.1.3 Data Alignment

Data alignment refers to the processing required to modify data, received from

multiple sources, such that it permits that data to be reasonably compared and

associated (Hall and Llinas, 2001). Prior to fusion, data from individual sources must

be transformed into a consistent format that is suitable for subsequent processing.

That is, data from multiple sources can only be e�ectively combined if the data are

compatible in format and consistent in their frame of reference.
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There are �ve possible processes involved in data alignment (Bowman and Stein-

berg, 2001):

1. Common Formatting: transforming data to standard data types and/or units

of measure. Typically performed by unit adjustment algorithms.

2. Time Propagation: extrapolating old time values to current time. Typically

performed by temporal adjustment algorithms.

3. Coordinate Conversion: translating data from various coordinate systems to a

common spatial referencing system. Typically performed by spatial reference

adjustment algorithms.

4. Mis-alignment Compensation: correcting displacement errors in observations.

5. Evidential Conditioning: assigning con�dence values associated with data at-

tributes.

In the current study, there were two data sources (keystroke dynamics metrics

and �ngerprint features) that were not compatible in format or frame of reference.

The keystroke dynamics metrics consisted of numerical values only, whilst the �nger-

print features consisted of numerical values and two dimensional coordinate values.

Thus data alignment was necessary, and the processes involved are discussed in

detail in Chapter 5 section 5.5.5.

The next section (2.3.2) provides a discussion of multi-modal biometrics, which

utilises data fusion.

2.3.2 Multi-Modal Biometrics

In recent times, research in the �eld of biometrics for authentication purposes, has

increasingly investigated the use of multiple biometric characteristics (multi-modal

biometrics). This section de�nes multi-modal biometrics, and discusses the bene�ts

(which have lead to the increased interest) of a multi-modal biometric system over

a uni-modal biometric system.
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The levels of data fusion as applied to multi-modal biometrics are discussed in

section 2.3.2.1, and a brief review of experimental work in this area of research is

provided in section 2.3.2.2.

Multi-modal biometrics refers to the use of more than one biometric characteristic

for person recognition. A multi-modal biometric system encompasses the necessary

processing required to incorporate the chosen multiple biometric characteristics into

the authentication procedure.

Research into multi-modal biometric systems has eventuated because uni-modal

biometric systems may su�er from any of the following limitations:

• Noise in sensed data (Ross and Jain, 2004). This could be a result of a defective

or mal-adjusted sensing device, or because of physical or behavioural changes

(either temporary or permanent) to the biometric of the person involved.

• Intra-class variations (Ross and Jain, 2004). These typically result from in-

correct or inconsistent interaction between the user and the sensing device.

• Inter-class similarity (Frischholz and Dieckmann, 2000; Ross and Jain, 2004).

A single characteristic may sometimes fail to be exact enough for identi�cation

(or veri�cation). For example, identical twins have facial features that could

prove impossible for a biometric system to consistently di�erentiate.

• Non-universality (Frischholz and Dieckmann, 2000; Ross and Jain, 2004). The

chosen characteristic may not always be readable, resulting in an inability to

acquire meaningful biometric data. For example, about 2% of people have

�ngerprints that cannot be recorded because they are obscured by cuts or

scars, or they are too �ne to show up well during acquisition (due to aging or

the e�ects of chemical re-agents).

If for any of the preceding reasons, accuracy is not attained by one modality, the

other modes may still lead to accurate authentication (Frischholz and Dieckmann,

2000). A multi-modal biometric system makes it very di�cult for an impostor to

simultaneously impersonate the multiple character traits of a legitimate user (Ross

et al., 2001).



52 CHAPTER 2. BACKGROUND

For example, impersonating facial features, vocal features and �ngerprint fea-

tures in real time (via the authentication procedure) would be much more di�cult

than impersonating only one character trait.

Thus the limitations of a uni-modal biometric system may be overcome or miti-

gated by using a multi-modal biometric system. Researchers believe that the use of

multi-modal biometrics will provide a more reliable and robust system (Frischholz

and Dieckmann, 2000; Ross et al., 2001; Ross and Jain, 2004).

2.3.2.1 Levels of Fusion In Multi-Modal Biometrics

This section discusses the levels of fusion at which multi-modal biometric systems

may typically operate. During the discussion, the relationship between the formal

levels of data fusion covered in section 2.3.1.2 and those used in a multi-modal

biometric system will be noted.

As discussed in section 2.2.2 (and illustrated in Figure 2.1), a generic uni-modal

biometric system consists of four modules (Ross and Jain, 2004; Faundez-Zanuy,

2009). For a generic multi-modal biometric system, a fusion module must be added

(refer Figures 2.6, 2.7, and 2.8).

A description of the roles for the four modules in a generic uni-modal biometric

system was provided in section 2.2.2. The fusion module (added to the generic

multi-modal biometric system) is responsible for combining the data from multiple

sources, and the proposed level of fusion determines its location in the system.

Figure 2.5 demonstrates that fusion can occur before the matching process or

after the matching process (Poh and Kittler, 2008). If fusion occurs before the

matching process, data may be fused at either the sensor or feature level. If fusion

occurs after the matching process, data may be fused at either the con�dence score,

rank, or decision levels.
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Figure 2.5: Data Fusion Levels In Multi-Modal Biometrics
The image was sourced from Poh and Kittler, (2008).

The data fusion levels in a multi-modal biometric system, are described as follows

(Ross and Govindarajan, 2005; Poh and Kittler, 2008):

• Sensor Level. Raw data represents the richest source of information (though

it may possibly be contaminated by noise). Raw data can be processed such

that a new, single vector, consisting of the integrated raw data, is obtained.

The newly created raw data vector may be processed directly or features may

be extracted from it. An important caveat regarding sensor level fusion is that

it is only possible to fuse data when samples of the same biometric trait are

used (Nandakumar, 2008). That is, where raw data from multiple instances

using the same sensor, or samples from multiple sensors, provide readings of

the same biometric. Consequently, this level of fusion is rarely attempted in

multi-modal biometrics because raw data (from multiple modes) can not be

meaningfully combined.

Sensor level fusion in multi-modal biometrics relates to the �rst level of the

formal data fusion levels covered in section 2.3.1.2.

• Feature Level. This fusion level uses data collected from the feature extraction

process (Osadciw et al., 2003). Researchers believe that feature level fusion

will result in accurate and robust authentication, because data at this level
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is closer to raw data�than the subsequent fusion levels�and maintains more

discriminatory information than those levels (Ross and Jain, 2004).

However, in order to achieve a high level of system performance, extensive pro-

cessing is typically required (refer section 2.3.2.2). Feature extraction typically

requires the selection of salient features, from the independent data sources,

that best represent the entity and can provide recognition accuracy (Poh and

Kittler, 2008).

Figure 2.6 illustrates the process �ow recommended for feature level fusion.

Firstly, the biometric capture modules are responsible for acquisition of the

biometric characteristics. In Figure 2.6 there are two such capture modules,

indicating a dual mode biometric system.

Following acquisition, is the feature extraction module (for each mode). At

this stage, the features relating to each individual mode remain separate (that

is, they remain separate feature vectors). Data alignment�to bring the fea-

tures from multiple independent sources into alignment (as discussed in section

2.3.1.3)�will usually be required prior to fusion. Feature selection may also be

required�prior to fusion�to reduce the size of the �nal feature set; otherwise

the fused feature set may su�er from the `curse of dimensionality' (Ross and

Govindarajan, 2005).

After feature extraction and data alignment (and possibly feature selection),

the fusion module combines the feature vectors corresponding to each inde-

pendent source. If data alignment was necessary, and had been successfully

performed, the fusion process becomes relatively simple. In some literature re-

lated to feature level fusion, the feature vectors are simply concatenated (Ross

et al., 2001; Ross and Jain, 2004; Faundez-Zanuy, 2009; Nandakumar, 2008).

The fused vector of features is then passed to the matching module, where it

is compared to a registered template. The template feature vector must have

been processed in the same manner, and result in the same format, as the

query feature vector. The output from the matching module is then passed to

the decision module, where the �nal classi�cation decision is made.
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It should be apparent that the complex and intensive processing required for

feature level fusion (to avail the system of the advantages of data fused at

this level) is mainly associated with feature pre-processing for the appropriate

representation of features, feature selection, and data alignment.



56 CHAPTER 2. BACKGROUND

F
igu

re
2.6:

F
eatu

re
L
evel

D
ata

F
u
sion

T
h
e
im
age

w
as

sou
rced

from
M
alton

i
et

al.,
(2003).



2.3. DATA FUSION AND MULTI-MODAL BIOMETRICS 57

Feature level fusion in multi-modal biometrics relates to the second level of

the formal data fusion levels covered in section 2.3.1.2.

• Con�dence (or Matching) Score Level. Fusion at this level occurs after a

matching module (for each mode) has determined a con�dence or matching

score (Osadciw et al., 2003; Indovina et al., 2003). The con�dence score is a

measure of similarity between the query and registered biometric feature vec-

tors (Nandakumar, 2008). This level of fusion is the most commonly employed

and researched of all fusion levels in multi-modal biometrics (Poh and Kittler,

2008; Nandakumar, 2008).

Figure 2.7 illustrates the process �ow recommended for con�dence score level

fusion. The biometric capture and feature extraction modules perform their

tasks as they would for feature level fusion. However, fusion at the con�-

dence score level does not involve the integration of the feature vectors. The

individual feature vectors are passed to the separate matching modules for

comparison with registered templates. That is, instead of a one vector com-

parison (as with feature level fusion), there are multiple vectors compared with

their corresponding templates (in the appropriate matching modules).

A con�dence score is calculated in each matching module, according to the

above comparison, and passed to the fusion module. The con�dence score

is essentially a probability score in the continuous domain (typically in the

interval [0, 1]). The scores from the individual matching modules are combined

in the fusion module, into a single scalar value (typically in the intervals [0, 1]

or [0, 100]), which is then passed to the decision module. The decision module

makes the �nal classi�cation decision, based on this fused con�dence score.

Fusion at this level requires less processing (than feature level fusion) in order

to achieve an appropriate level of system performance.

Con�dence score level fusion in multi-modal biometrics is not speci�cally de-

�ned among the formal data fusion levels covered in section 2.3.1.2. One could

conjecture that it may �t into the decision level of the formal data fusion levels.
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• Rank Level. Fusion at this level is more relevant to identi�cation than veri�ca-

tion (Ross and Govindarajan, 2005). For every enrolled identity in a database,

the con�dence scores for each mode are sorted in descending order and ranked

such that the lowest rank indicates the `worst' match and the highest rank indi-

cates the `best' match (with all other con�dence scores appropriately ranked).

A fusion method is used to consolidate the individual con�dence scores.

Rank level fusion in multi-modal biometrics is not speci�cally de�ned among

the formal data fusion levels covered in section 2.3.1.2, though being a subset

of con�dence score level, it may �t into the decision level of the formal data

fusion levels.

• Decision Level. Fusion at this level is the most abstract, where accept/reject

decisions�from multiple data sources�are consolidated into one �nal classi-

�cation decision (Osadciw et al., 2003).

Figure 2.8 illustrates the process �ow recommended for decision level fusion.

The biometric capture, feature extraction, and matching modules perform

their tasks as they would for con�dence score level fusion. However fusion at

the decision level, does not involve the integration of the con�dence scores.

The individual con�dence scores are passed to the decision modules, where

accept/reject decisions (output as boolean values) are made for each mode.

Each decision module makes its classi�cation decision (based on the con�dence

score passed to it), and passes its decision to the fusion module. The multiple

boolean values are integrated to generate the �nal classi�cation decision.

Fusion at this level takes advantage of the processing performed by each mode's

matching and decision modules to arrive at an individual decision. This makes

decision level fusion more scalable than the other levels.

Fusion at this level requires the least amount of processing (compared to the

other levels) in order to achieve an appropriate level of system performance.

Decision level fusion in multi-modal biometrics relates to the third level of the

formal data fusion levels covered in section 2.3.1.2.
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The next section presents a review of some experimental e�orts in multi-modal

biometric authentication.

2.3.2.2 Review of Multi-Modal Biometrics Research

This section provides a review of some research e�orts in the �eld of multi-modal

biometrics4. As will be discovered, early work predominantly involved fusion at

the con�dence score or decision levels. More recently, work involving fusion at the

feature level has been undertaken.

The review will focus on the data fusion related issues (such as fusion paradigms,

fusion levels, and fusion methods). Other experimental factors (such as data treat-

ment) and methodological issues, are not considered in this review for the following

reasons:

• Such issues�related to the particular biometric characteristics used in this

study�are discussed in the literature reviews in Chapter 3 section 3.4 (for

keystroke dynamics) and Chapter 4 section 4.5 (for �ngerprint recognition).

• For the purpose of comparing results between the reviewed papers and the

current study, the interest is primarily concerned with data fusion issues.

The research �ndings and data fusion issues relating to the experiments involving

multi-modal biometrics, as conducted by the authors of the papers reviewed, are

summarised in Table 2.25. As well a being useful as a quick reference for the following

discussion, the information in Table 2.2 will be used in Chapter 7 to compare results

achieved in the current study with those of previous research.

4It should be noted that the review is by no means a comprehensive coverage of all work done
in this �eld. Rather the research e�orts reviewed here were chosen to provide an overview of the
current status in this �eld, and to provide �gures with which to compare the results of the current
experiment.

5Note that in Table 2.2, the performance variables (FAR and FRR in columns 7 and 8 respec-
tively) are denoted as actual rates (i.e. a percentage divided by 100), even though some authors
expressed them as a percentage. During the discussion, the performance variables will be presented
as both the actual rates and their corresponding percentages (in parenthesis).
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One of the earliest research e�orts in multi-modal biometrics was by Jain et

al., (1999a). The following is a brief description of the extraction and matching

operations for the three modalities used in their experiment:

1. Fingerprint Recognition. The position and orientation of local �ngerprint fea-

tures (refer Chapter 4 section 4.3.2) were determined from a live-scan �nger-

print image. Matching involved comparison of the two-dimensional minutiae

patterns in a template with those of a query �ngerprint image. A con�dence

score�indicating the likelihood that the two �ngerprints belong to the same

�nger�was calculated.

2. Face Recognition. Feature extraction involved the use of the eigenface ap-

proach to obtain a feature vector of a facial image. A set of orthonormal

vectors that best described the distribution of a facial image�in a lower di-

mensional subspace (eigenspace)�was computed. The feature vector repre-

sented the projection of the original facial image on the reduced eigenspace.

Matching involved the projection of a query facial image onto the template

eigenspace, and a con�dence score computed based on a similarity function.

3. Speaker Recognition. Here, the acoustic properties of the speech signal were

extracted. In the matching module, analysis of the identi�ed properties (linear

prediction coe�cients of the cepstrum) was performed by hidden markov model

(HMM). A con�dence score was computed based on a similarity function.

The authors employed decision level fusion, where each matching or veri�cation

module determined a similarity or con�dence score. The scores were then passed to

the corresponding decision modules, where individual accept/reject decisions were

made. These individual decisions were then passed to the fusion module. Fusion

was achieved using the joint class-conditional probability density function, which

established the �nal classi�cation decision.

For the training stage (to obtain the templates), 50 participants provided 10

�ngerprint samples each (a total of 500 samples), 9 facial images each (a total of

450 samples), and 12 speech samples each (a total of 600 samples).
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For testing, 25 participants (a subset of the 50 participants from which the

training samples were collected) provided 15 �ngerprint samples each (a total of 375

samples), 15 facial images each (a total of 375 samples), and 15 speech samples each

(a total of 375 samples).

From the ROC graph6, the best results for the fusion of all three modalities

were a false acceptance rate (FAR) of approximately 0.0001 (0.01%) and a false

rejection rate of approximately 0.14 (14%). These results demonstrate a very good

FAR, with a less than satisfactory FRR. It should be noted that the ROC curve

demonstrated that the fusion of all three modalities performed considerably better

than each individual modality.

Chatzis et al., (1999) used two biometric characteristics for their experiment,

but employed the following �ve modalities (four facial feature extraction methods

and one speech authentication algorithm) from these characteristics:

1. Morphological dynamic link architecture (MDLA): a facial recognition tech-

nique that employs both gray-scale and shape information.

2. Pro�le shape matching (PSM): another facial recognition technique that em-

ploys pro�le shape information.

3. Grey level matching (GLM): another facial recognition technique that uses the

grey level values of an image.

4. Gabor �lters to create feature vectors and implementing the dynamic link

architecture (GDLA).

5. Maximum signal processing (MSP): a speech authentication algorithm based

on hidden markov models (HMM).

Data fusion was performed at the decision level. The following six di�erent

decision functions were used to integrate the individual decision outputs from each

of the modalities:

1. k-Means Algorithm (KM): classi�es each training vector as tending to a certain

cluster based on a minimum distance measure.
6ROC graphs are explained in Chapter 6 section 6.2.2.
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2. Fuzzy k-Means Algorithm (FKM): classi�es each training vector to all clusters,

and assigns a membership value�in the continuous interval [0,1]�indicating

the strength/weakness of the association between the vector and each of the

k clusters.

3. Fuzzy Vector Quantization Algorithm (FVQ). Vector quantization techniques

are usually applied to lossy image compression7 (Tsekouras, 2005). The central

issue in vector quantization applications is the generation of the appropriate

codebook. Most vector quantization methods perform the codebook design by

employing crisp decision-making procedures (by assigning each training vector

to only one cluster). The fuzzy approach treats each cluster as a fuzzy set and

therefore, the codebook design is a soft decision making process.

4. Fuzzy Data k-Means Algorithm (FDKM): the inclusion of a quality measure

(based on a fuzzy vector distance measure) to modify the data supplied to the

fuzzy k-Means algorithm.

5. Fuzzy Data Vector Quantization Algorithm (FDVQ): the inclusion of a qual-

ity measure (based on a fuzzy vector distance measure) to modify the data

supplied to the fuzzy vector quantization algorithm.

6. Median Radial Based Function Network (MRBF). A RBF network is a two

layered neural network for classi�cation or functional approximation. The

hidden or middle layer neurons implement a Gaussian function to model the

location and spread of clusters. An output layer neuron applies the weighted

sum of the hidden layer neuron to a sigmoidal function (refer section 2.4.2.1).

MRBF networks are not in�uenced by outliers due to the use of a median

operator.

The experiment applied di�erent combinations of modalities to the above deci-

sion functions. The best results were achieved when the following three modalities

were combined:
7The implementation of vector quantization in image compression requires the decomposition

of the image into a number of rectangular blocks. Each block forms a vector (i.e. training vector).
The objective is to classify all the training vectors into a number of clusters, by minimizing a
distortion measure. The centers of the resultant clusters provides the `codebook' vectors. The
image is reconstructed by replacing each training vector by its closest codebook vector.
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1. Morphological dynamic link architecture (MDLA).

2. Pro�le shape matching (PSM).

3. Maximum signal processing (MSP).

Using the fuzzy data k-means (FDKM) decision function, the results (for the

above three modalities) were a FAR of 0.0039 (0.39%) and a FRR of 0.0. These

results demonstrate an excellent FRR score, with a less than satisfactory FAR.

Ross et al., (2001) experimented using three modalities:

1. Face Recognition. As with Jain et al., (1999a), feature extraction involved

the use of the eigenface approach to obtain a feature vector of a facial image.

Matching involved computing the Euclidean distance between the eigenface

coe�cients in a template feature vector with those calculated for the query

feature vector.

2. Fingerprint Recognition. The features (position and orientation) associated

with local �ngerprint features were determined from a live-scan �ngerprint

image. Matching involved comparison of the two-dimensional minutiae pat-

terns in a template with those of a query �ngerprint image.

3. Hand Geometry. Fourteen features of a subject's right hand were extracted

from a captured image, to obtain a feature vector. The features included the

length and widths of �ngers, and the width of the palm at various places.

Matching involved computing the Euclidean distance between the metrics in

the template feature vector with those of the query feature vector.

The matching modules corresponding to each of the modalities returned their

own con�dence score for each comparison. Four hundred and �fty samples (9 sam-

ples provided by 50 participants) of each of the three biometric characteristics were

available for testing. Therefore, 450 genuine scores (true positives) and 22,050 im-

postor scores (false positives) could be generated for each modality. Con�dence

scores were mapped to the continuous interval [0, 100].
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Data fusion was performed at the con�dence score level, using three di�erent

fusion methods:

1. Sum Rule: this was simply the weighted average of all individual con�dence

scores.

2. Decision Tree: generated from training data of genuine and impostor con�-

dence scores, and then tested against independent genuine and impostor con-

�dence scores in the test data.

3. Linear Discriminant Function: analysis of the training sets by this function

minimised the inter-class separation. Testing set vectors were then classi�ed

using the minimum Mahalanobis distance rule.

The best results were returned when the simple Sum Rule was employed to

fuse the con�dence scores. With no bias applied to any of the modalities, the

experiment achieved a FAR of 0.0003 (0.03%) and a FRR of 0.0178 (1.78%). The

results demonstrate similar accuracy to the two previous research e�orts, with a

good FAR and an acceptable FRR.

Wang et al., (2003) used two biometric characteristics for their experiment. Face

recognition and iris recognition were used because this combination allowed for si-

multaneous acquisition of the required images.

The following is a brief description of the extraction and matching operations

for the two modalities used in their experiment:

1. Face Recognition. As with Jain et al., (1999a), feature extraction involved the

use of the eigenface approach to obtain a feature vector of a facial image. A

scatter matrix S�incorporating the mean vector�was calculated for each of

the N samples. The principal directions of S are the eigenvectors correspond-

ing to the M largest eigenvalues of S. A vector Y was determined for each

query facial image X, by projecting X onto the subspace obtained by the prin-

cipal directions. Matching involved comparison between the feature vectors

(from the registered and query samples) to produce a con�dence score.
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2. Iris Recognition. For feature extraction, the iris location was estimated by

two circles, superimposed over the scanned image of the iris. The iris part

was `unwrapped' to form a rectangular region. An algorithm, to characterise

the critical points of local variation in the rectangular region, was used to

record features. The con�dence score between registered and query samples

was determined by comparing the features.

For the experiment, 5 samples from 90 participants' facial images8�consisting

of a reasonable variation of expression, pose, and lighting�were selected. This

provided 450 facial images. The same number of iris scan samples were also obtained

from 90 participants.

Three di�erent methods were used to fuse and then classify the con�dence scores

from the individual modalities:

1. Weighted Sum Rule. The individual con�dence scores were summed with

di�erent weights, and calculated at di�erent thresholds. At these di�ering

thresholds, the Sum Rule calculations (which included the adjusted weights)

were used in determining the performance variable (FAR and FRR) values.

2. Fisher Discriminant Analysis. The features from each modality were treated as

elements of a vector, and the boundary between genuine and impostor vectors

was then used to determine class membership.

3. Radial Based Function Network (RBFN). Again, the features from each modal-

ity were treated as elements of a vector, and the RBFN was then used for

classi�cation.

Best results were achieved by the RBFN which produced perfect recognition

(that is, a FAR of 0.0 and a FRR of 0.0) at various threshold values between 0.2

and 0.8. These were excellent results, and demonstrated the suitability of certain

arti�cial neural networks for classi�cation purposes.

8Seventy one of which were taken from public domain face databases.
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Feature Level Data Fusion Issues

Before discussing some the research e�orts that have utilised feature level fusion,

the following issues associated with this level of fusion are expounded below (Ross

and Govindarajan, 2005):

1. The feature sets corresponding to each of the modalities under consideration

may not be compatible for fusion. In the current study, this is the case with

feature sets corresponding to keystroke dynamics and �ngerprint recognition.

As mentioned in section 2.3.2.1, data alignment is typically required for the

fusion of feature sets to achieve meaningful representation. In some literature,

data alignment is referred to as feature normalisation.

2. The correspondence among the di�erent feature spaces (for each of the modal-

ities) may be unknown. If an unknown correspondence between feature spaces

exists, this may impact on data fusion design decisions. As an example, in

Chapter 5 section 5.3 the point is made that there was presumed to be no re-

lationship between an individual's typing behaviour and their �ngerprint char-

acteristics. With no perceived correspondence between their feature spaces, it

was deemed unnecessary for data from the two types of data �les to belong to

the same participant.

3. As previously mentioned, most e�orts in the �eld of feature level fusion sim-

ply concatenate the feature sets from the di�erent modalities. This very often

results in a very large dimensional feature vector; the resultant feature vec-

tor may contain noisy or redundant data, which may have very little or no

signi�cance to the pattern recognition task. This is commonly referred to as

the `curse of dimensionality' problem. As discussed in section 2.3.2.1, feature

selection may help to alleviate or mitigate this problem to some degree by

reducing data dimensionality.

4. A substantially more complex matching process will typically be required to

utilise the features in the concatenated feature vector.
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Feature Level Data Fusion Research

Son and Lee (2005) used two biometric characteristics (facial recognition and iris

recognition) for their experiment. The reason given for the choice of these two bio-

metric characteristics, was that they are both attainable from facial images. Wavelet

transform was used to extract features from samples of both biometric characteris-

tics.

The authors performed data fusion at the feature level by concatenated the fea-

ture sets from both sources. However, they noted that the extracted features demon-

strated high dimensionality and thus resolved to attempt to reduce the size of the

combined feature vector. For this process, the Direct Linear Discriminant Analysis

(DLDA) technique was applied to attain what the authors named a `Reduced Joint

Feature Vector' (RJFV).

Typically, Linear Discriminant Analysis (LDA) methods �rst use Principle Com-

ponent Analysis (PCA)9 to lower the dimensionality of data, and then LDA10 to

further reduce dimensionality (Son and Lee, 2005). However, PCA will often re-

move components that may be useful for discriminating between classes. The DLDA

method reduces dimensionality, by directly removing components that are less likely

to be useful in discriminating between classes and maintaining components that are

most likely to be useful in discriminating between classes.

As the end product of the DLDA was a RJFV (consisting of only useful infor-

mation), the methodology achieved the same goals as a feature selection approach.

Thus, the paradigm can be considered to be cooperative rather than complementary.

For the experiment, 10 samples each from 140 individuals were selected from two

facial image databases (400 samples from one database and 1000 from the other).

9The central idea of principal component analysis (PCA) is to reduce the dimensionality of
a data set, while retaining as much as possible of the variation present in the data set. This is
achieved by transforming the original data set to a new set of orthogonal variables; the principal
components (PCs) (Jolli�e, 2002). The goal of PCA is to extract the important information from
the data set, to represent it as a set of principal components, and to determine the pattern of
similarity (Abdi and Williams, 2010). It is reasonable to expect that a relatively small number of
features are su�cient to characterise a pattern or class (Swets and Weng, 1996).

10Although PCA is well-suited to object representation, the features produced are not necessarily
good for discriminating among classes de�ned by the set of samples. PCA describes some major
variations in the class, however these variations may well be irrelevant to how the classes are
divided. Linear Discriminant Analysis is a method for providing clear linear separation of features
that optimally discriminate among the classes represented in the data set (Swets and Weng, 1996).
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Two iris image databases were compiled; one containing 1000 images (10 samples

each from 100 individuals) of high quality, and the other containing 1000 images (10

samples each from 100 individuals) of low quality.

The best results were achieved when the high quality iris images were fused with

the facial images from the database that contributed 400 samples. From the ROC

curves presented by Son and Lee (2005) in their publication (Figure 5), a FAR and

a FRR of 0.0 were achieved. Other very good results were also in evidence.

This research e�ort con�rmed that feature level fusion of data from multiple

sources can return accurate classi�cation performance. It also demonstrated that

feature selection not only improved e�ciency (by reducing the dimension of com-

bined feature vectors), but further improved accuracy by ensuring that the selected

features provided the most meaningful discrimination between classes.

Ross and Govindarajan (2005) used two biometric characteristics (facial recogni-

tion and hand geometry) for their experiment. Feature extraction for facial images

was performed by Principle Component Analysis (PCA) and Linear Discriminant

Analysis (LDA) on the R, G, B channels, and the I gray-scale rendition, of the

colour image. The resultant coe�cients consisted of 27 features. The hand ge-

ometry feature vectors consisted of a 9-byte value comprising di�erent geometric

measurements.

The feature vectors for both modalities were normalised (aligned) so that their

respective components could equally contribute to the �nal matching. A median

normalisation scheme was used to align the feature vectors, because this scheme

was considered non-sensitive to outlier values. Let X = {x1, x2, . . . , xm} and Y =

{y1, y2, . . . , yn} be the feature vectors of the two modalities. Each xi and yi value

was normalised according to Equation 2.1.

ξ′ =
ξ −median(Fξ)

median(|(ξ −median(Fξ))|)
(2.1)

where ξ is the ith feature value being normalised, Fξ is the function that generated

ξ, and ξ′ is the normalised value of ξ.
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Thus after normalisation, the feature vectors corresponding to the two modalities

are denoted X ′ = {x′1, x′2, . . . , x′m} and Y ′ = {y′1, y′2, . . . , y′n}, and a merged feature

vector�from these two sources�can be denoted Z ′ = {x′1, x′2, . . . , x′m, y′1, y′2, . . . , y′n}.

To reduce the in�uence of the curse of dimensionality (and to improve classi�-

cation performance), feature selection was performed such that a minimal feature

set, of size k, k < (m + n), was obtained. The sequential forward �oating selection

technique was employed to obtain a reduced feature vector Z = {z1, z2, . . . , zk}.

Thus, this research adopted a cooperative data fusion approach.

For matching, two instances of feature vectors Zi and Zj (derived from {Xi, Yi}

and {Xj, Yj}) were compared to obtain the normalised match (Euclidean distance)

scores sX and sY . Using the simple sum rule, the fused match score (smatch =

(sX + sY )/2) was obtained.

Also, two di�erent distance measures were calculated from the two feature vectors

Zi and Zj, according to Equations 2.2 and 2.3:

seuc = Σk
r=1(zi,r − zj,r)2 (2.2)

stad = Σk
r=1I(|zi,r − zj,r, t|) (2.3)

where seuc is a Euclidean distance measure, stad is a threshold absolute distance

measure, and t is a pre-speci�ed threshold. I(y, t) = 1, if y > t, otherwise I(y, t) = 0.

Using the simple sum rule again, seuc and stad were consolidated into one feature

level score sfeat. Again using the simple sum rule, smatch and sfeat were combined

to obtain a �nal match score. This methodology appears to be a combination of

feature level and con�dence score level fusion. For this review (as denoted in Table

2.2), the authors designation was noted. For the experiment, 5 facial image samples

and 5 hand geometry samples were collected from 100 participants.

The best results, derived from the authors ROC graph for the two fused modal-

ities, were a FAR of 0.0001 (0.01%) and a FRR of 0.13 (13%)11. The FAR demon-

strates excellent accuracy, however the FRRmay be considered less than satisfactory.

11Refer Ross and Govindarajan (2005), page 202 Figure 6.
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As face and �ngerprint recognition are now being used for biometric identi�cation

traits by US Immigration and the European electronic passport, Rattani et al.,

(2007) proposed a method for feature level fusion of these two characteristics. The

common level of fusion in existing systems (for these two characteristics) is based

on the con�dence score.

The following is a brief description of the extraction operations for the two modal-

ities used in their experiment:

1. Face Recognition. Facial features were extracted using the Scale Invariant Fea-

ture Transform (SIFT) technique. SIFT is an image descriptor that provides

a compact representation of the local gray-scale structure (of facial features),

which are invariant to image scaling, translation, and rotation12. A set of

SIFT features (s1, s2, . . . , sm) were extracted, where each feature consists of

the (x, y) spatial location, the local orientation θ, and the key point descriptor

k of size 1x128. That is, each si = (x, y, θ, k).

2. Fingerprint Recognition. The position and orientation of local �ngerprint

features (minutiae) were determined for each �ngerprint image. The extrac-

tion process involved normalisation, Gabor �lter pre-processing, binarisation,

ridge map thinning, and minutiae extraction (these techniques are discussed

in Chapter 4 sections 4.4.3 and 4.4.4). A set of local features (m1,m2, . . . ,mn)

were extracted, where each feature consists of the (x, y) spatial location, the

local orientation θ. That is, each mi = (x, y, θ).

In order to align the feature sets corresponding to the two di�erent modalities,

a key point descriptor was de�ned for each minutiae extracted from a �ngerprint

image. The local region around each minutia was convolved using Gabor �lters to

produce a key point descriptor of size 1x128. The key point descriptors�from each

feature, from each modality�were then normalised using the min-max technique,

thus reducing their ranges to the interval [0, 1].

The feature sets were then concatenated to give the combined feature vec-

tor (s1norm, s2norm, . . . , smnorm,m1norm,m2norm, . . . ,mnnorm). Three feature reduc-

12Illumination changes are partially invariant.
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tion strategies (`k-means clustering', `neighbourhood elimination', and `3 points in

a speci�c region') were applied. The aim of k-means clustering and neighbourhood

elimination strategies was to remove redundant data (using Euclidean distance mea-

sures) that were very near speci�c features. The aim of the third strategy was to

consider only those points in highly distinctive regions.

Matching involved the comparison of a query feature set and a template feature

set (both constructed in the same manner). Two di�erent fusion classi�ers were

used:

1. Point Pattern Matching. Here correspondences between points (in the feature

sets of both modalities) were determined based on spatial distance, direction

di�erence, and the Euclidean distance between the corresponding key point

descriptors (each within a pre-determined threshold). A �nal matching prob-

ability was calculated as the ratio of the number of correspondences to the

total number of feature points in both feature sets.

2. Delauney Triangulation. Here, a triplet of feature points were grouped into a

new feature. A Voronoi diagram isolated regions around each feature point,

and delauney triangulation connected the centres of every pair of neighbouring

Voronoi regions; a feature vector, comprising information derived from the

delauney triangulation, was thus obtained. The �nal score was based on the

number of corresponding triangles that both query feature set and registered

feature set had in common.

For the experiment, 5 facial images and 5 �ngerprint scans were collected, from

50 individuals. The facial images were obtained from the Biometric Access Control

for Networked and E-Commerce Applications (BANCA) database, and �ngerprint

scans were collected by the authors.

Only 1 of the 5 samples per participant�for a facial image/�ngerprint pair�

was used as a template for training the fusion classi�er. The 4 remaining sample

pairs per participant were used for testing purposes. This involved comparing a

participants 4 query samples against the database of templates. Therefore, there

were 200 (50x4) genuine test scores and 2450 (50x49) impostor test scores generated.
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The best results, with a FAR of 0.0102 (1.02%) and a FRR of 0.0195 (1.95%),

were achieved using the Delauney triangulation classi�er, and the `3 points in a

speci�c region' feature reduction strategy. The best results achieved using the point

pattern matching classi�er and the k-means clustering feature reduction strategy,

were a FAR of 0.0318 (3.18%) and a FRR of 0.0198 (1.98%). Results presented by

the authors also demonstrated that feature level fusion out-performed con�dence

score level fusion in all tests.

For their experiment, Yao et al., (2007) used two biometric characteristics; facial

recognition and palmprint recognition.

Feature extraction involved the application of two di�erent transform techniques:

1. Circular Gabor Filter Transform. The transform, which produces four possible

scales and eight possible orientations, was calculated by Equation 2.4.

G(x, y, θ, u, σ) =
1

2πσ2
exp(−x

2 + y2

σ2
)× exp(2πi(ux cosθ + uy sinθ)) (2.4)

where σ ∈ {2, 4, 8, 16}, u = 1/σ, and θ ∈ {0, 1, 2, 3, 4, 5, 6, 7} × π/8.

2. Principal Component Analysis (PCA) Transform. Also called the Karhunen-

Loeve (KL) Transform. This technique de-correlates the components or fea-

tures of a data source and redistributes the energy contained in the feature set

so that most of the energy is contained in a smaller number of features. Af-

ter PCA transform, the features are completely de-correlated, and the energy

contained in the feature set is maximally concentrated in a small number of

features.

Firstly, the Gabor transform was applied to a facial image and a palmprint image

to produce Xface and Xpalm respectively. Then the PCA transform was applied to

the respective outputs, to extract the more discriminant features (and thus reduce

dimensionality). That is, Yface = PCA(Xface) and Ypalm = PCA(Xpalm).
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Normalisation was then applied according to Equation 2.5:

ynorm−face =
yface − µface

σface
(2.5)

where yface was a single sample of Yface, µface and σface were the mean and variance

of the training sample set of Yface, and ynorm−face was the resultant normalised facial

feature vector. The same process was applied to each single sample ypalm of Ypalm

to obtain the normalised palmprint feature vector ynorm−palm.

A distance-based separability value�based on class membership according to the

Nearest Neighbour (NN) classi�er�was calculated for each ynorm−face and ynorm−palm.

These were denoted Sface and Spalm respectively, and were used in the determination

of a weight vector [w1, w2, . . . , wM ], where M was the number of test samples. The

average weighting value was then calculated as w = ΣM
j=1wj/M .

Fusion was then simply performed according to Equation 2.6:

yfuse = [ynorm−face, w × ynorm−palm] (2.6)

The Nearest Neighbour classi�er was used to classify Yfuse (that is, each yfuse),

by the Euclidean distance between each feature in the registered sample and query

samples.

The experiment used 20 facial images from 119 participants obtained from the

AR Face Database13, and 20 palmprint images from 119 participants obtained from

the Hong Kong Polytechnic University 2D_3D_Palmprint Database14.

Only one sample (per participant) was used for training purposes (providing 119

fused training vectors); there were 2,261 (119x19) samples (per participant) used for

testing purposes.

Results are presented using a performance variable called the recognition rate,

and the feature level fusion achieved a rate of 90.73%. Unfortunately, the calculation

of the performance variable was not speci�ed, and no FAR or FRR �gures were

provided.

13Information about this database is available from Ohio State University�
http://www.ece.osu.edu/ãleix/ARdatabase.html.

14Information about this database is available from Hong Kong Polytechnic University�
http://www4.comp.polyu.edu.hk/�biometrics/2D_3D_Palmprint.htm.
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Though this paper did not provide values for the typical performance variables�

so that results could be compared with those of the current study�it was included in

the review because fused vectors of feature level data were used (for classi�cation)

when testing the fusion method. The method used by Ross and Govindarajan

(2005), processed feature data into a single scalar score that was alluded to be

representative of a fused feature vector. The approach taken by Yao et al., (2007), to

perform feature level fusion based on actual feature data, seems a more appropriate

method for feature level fusion than one based on a single score derived from feature

data.

Nandakumar (2008) investigated a number of di�erent data fusion strategies

for veri�cation purposes, as part of a PhD dissertation. The following discussion

concentrates on those data fusion strategies most closely associated with the current

study.

Firstly, data fusion was performed at the con�dence score level. Like the �rst four

studies reviewed (that is, those by Jain et al., (1999a), Chatzis et al., (1999), Ross

et al., (2001), Wang et al., (2003)), the experiment by Nandakumar (2008) could

be considered as adopting a complementary approach to data fusion (because all

con�dence scores were fused and all features were utilised to attain those con�dence

scores).

The work presented a statistical framework to achieve the fusion of con�dence

scores, which required explicit estimation of genuine and impostor score densities.

The well known Gaussian Mixture Models (GMM) were employed to estimate score

densities, because the estimates obtained from such models have been shown to

converge to the true density. Other density estimate models were investigated,

however the GMM returned best results. Fusion of con�dence scores was achieved

using the complete likelihood ratio test.

For the experiment, two multi-modal databases were utilised; the NIST Biomet-

ric Scores Set - Release I (NIST-BSSR1) and the XM2VTS-Benchmark database.

The NIST-BSSR1 has three partitions. Partition 1 is a multi-modal database, which

consists of 517 users with two �ngerprint and two face scores. Partition 2 is a �nger-
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print database and consists of scores from left and right index �ngerprint matches

of 6,000 individuals. Partition 3 is a facial image database, which consists of scores

from two face matchers applied on three frontal facial images from 3,000 individuals

(National Institute of Standards and Technology, 2010b). The XM2VTS-Benchmark

database consists of the scores from �ve face matchers and three speech matchers

obtained from four recordings of 295 subjects (The XM2VTS Database, 2010).

Best results were achieved using the GMM and the complete likelihood ratio

fusion, tested on the NIST-BSSR1 multi-modal database (Partition 1); a FAR of

0.0001 (0.01%) and a FRR of 0.009 (0.9%). These results are at the very least com-

parable to the other reviewed research e�orts that have fused data at the con�dence

score level. Also, as the results were tested on benchmark databases of substantial

sample sizes, the methodology can be considered to have demonstrated excellent

accuracy on a much larger population than the other experiments.

The issues involved in relation to feature level data fusion, as discussed in this

section (2.3), were taken into consideration for the experiment in the current study.

Chapter 5 section 5.6 describes the implementation of data fusion in this study.

The results achieved when data fusion was implemented are presented in Chapter 6

section 6.4.3. A discussion of these results, when compared to the research e�orts

covered in this section (2.3), is provided in Chapter 7 section 7.2.3.

The next section 2.4 discusses pattern recognition and arti�cial neural networks.

2.4 Pattern Recognition And Arti�cial Neural

Networks

This section �rstly provides an overview of pattern recognition in section 2.4.1, and

then looks at a number of di�erent classi�cation schemes in section 2.4.1.1.

Section 2.4.2 provides a discussion on Arti�cial Neural Networks. In section

2.4.2.1, the concept of ANNs simulating the operations of the human brain is ex-

plored and how they can be modeled to be useful for computerised tasks. An ex-

planation of some of the di�erent ANN architectures is presented in section 2.4.2.2;
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of particular relevance to the experiment in this dissertation are the single and

multi-layer perceptrons discussed in sections 2.4.2.2 and 2.4.2.2 respectively.

Section 2.4.3 discusses the properties of the multi-layer perceptron, which has

led to this neural network gaining wide acceptance as an accurate pattern classi�er.

2.4.1 Pattern Recognition

From birth, human beings and other animals utilise their inherent object recognition

abilities for survival in their environment (Marques de Sa, 2001). The objects of

concern may be physical or conceptual. The recognition task may be simple or

complex. Whatever the case, our ability to develop object recognition skills is crucial

to learning and progressing, and thus surviving.

The skills to perform object recognition are developed from experience (Mar-

ques de Sa, 2001). For example, when we �rst encounter an object, we observe and

identify certain information about that object and store it in our memory. When

next we encounter that object, we again identify information about the object and

compare that information to our memory of the object.

An example would be recognising another person. When we encounter someone

for the �rst time, we identify certain characteristics about that person and store

them in our memory. When next we encounter that person, we again identify the

characteristics and compare them to those in our memory.

Pattern recognition is analogous to object recognition, however it refers more

speci�cally to those tasks performed by automated systems to imitate or simulate

the human ability for object recognition (Marques de Sa, 2001).

Pattern recognition had its origins in theoretical research�in the area of statistics�

prior to the 1960's, but with the advent of the computer age has led to the devel-

opment of practical automated methods for recognising patterns in many di�erent

applications areas (Theodoridis and Koutroumbas, 2006). Some of the application

areas for this scienti�c endeavour are machine intelligence or learning, machine vi-

sion, character recognition, computer-aided diagnosis, and speech recognition.
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In order to observe and subsequently recognise an object, that object needs to

be accurately described (Friedman and Kandel, 1999). This description of an object

is referred to as a pattern�that is, a pattern describes an object.

Pattern recognition is a discipline whose goal is the classi�cation of patterns into

di�erent categories or classes (Theodoridis and Koutroumbas, 2006). That is, it is

concerned with discriminating between di�erent populations of patterns (Friedman

and Kandel, 1999). In a practical sense, it involves assigning an query input pattern

to one of a �nite number of M known or exemplar patterns (Lippmann, 1989).

For example, there may be four di�erent types of road vehicles�cars, buses,

trucks, motorcycles. In this case, there are four categories or classes to which a

road vehicle can belong. Given an input or query pattern, allocation to a class is

often referred to as classi�cation. The decision to allocate a particular pattern to a

particular class is based on the features that are used to describe the object (and

thus obtain the pattern) and the features that specify or characterise each class

(Friedman and Kandel, 1999).

Di�erent classes may be described by some common features, though the values

of these features should di�er enough to cause an input pattern to be allocated

membership to one speci�c class. For example, all human beings have weight and

height features and the values for these features could be used to formulate di�erent

classes; tall and light, tall and heavy, short and light, short and heavy.

Feature selection involves determining the features to use when describing an

object�to form a pattern�and also to use for class di�erentiation. More precisely,

identifying the features that make patterns distinct, and the measurable attributes

that make the distinction apparent for the de�ning of classes or categories to which

a pattern may belong (Theodoridis and Koutroumbas, 2006). The process of ob-

taining the actual measurements or values for the selected features is called feature

extraction.

A pattern recognition system employs the available information�that is, ex-

tracted features�to classify patterns or data based either on a priori knowledge or

on statistical information extracted from the patterns. The patterns to be classi�ed
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are usually groups of measurements or observations, de�ning points in an appropri-

ate multi-dimensional space.

A typical pattern recognition system should consist of (Wang, 2002):

• A sensor that gathers the observations to be classi�ed or described.

• A scheme that discerns the salient features, de�nes the appropriate classes,

and describes the pattern.

• A feature extraction mechanism that computes numeric or symbolic informa-

tion from the observed selected features.

• A classi�cation or description scheme that performs the actual task of classi-

fying or describing observations, based on the extracted features.

However, there are practical concerns, that can cause error in a pattern recogni-

tion system, that need to be taken into account when designing and implementing

the system (Marques de Sa, 2001):

1. The selected features that describe a pattern should be su�cient to truly

represent the object being observed.

2. The pattern samples used to de�ne a class should be truly representative of

that class.

3. The classi�cation scheme should be e�ective in separating the classes.

4. The classi�cation scheme should be able to di�erentiate between classes, given

that some classes may contain naturally occurring feature overlap.

The next section discusses classi�cation schemes in more detail.

2.4.1.1 Classi�cation Schemes

A pattern recognition system has as its ultimate goal the correct classi�cation of

an input pattern (Friedman and Kandel, 1999). Classi�cation occurs after relevant

features (that characterise the pattern) have been identi�ed and extracted. Once
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the features have been extracted, they are presented to the classi�er to determine if

the input pattern is a member of a given class.

A classi�er is a `machine' that is designed to allocate a given input pattern to

the most appropriate of the available or known classes (Marques de Sa, 2001). To

do this, the classi�er applies its computational algorithm to the given features and

indicates the likelihood of class membership. Note that indicates implies that the

classi�er is making a best estimate, and that estimate may or may not be correct.

The classi�cation scheme is usually based on the availability of a set of patterns

and known classes that have been described or categorised by human experts (Mar-

ques de Sa, 2001). The set of patterns is termed the training set, and the resultant

learning strategy is characterised as supervised learning. Supervised learning pro-

vides an association between input data and decision making. Learning can also be

unsupervised, where the system is not given an a priori labeling of patterns; instead

the system itself establishes the classes based on the statistical regularities of the

input patterns.

There are various methods for classi�cation, appropriate to the data being clas-

si�ed and the application to which it is being applied. The classi�cation schemes

discussed below assume a priori knowledge of classes (Friedman and Kandel, 1999):

• Decision Functions. This scheme deals with a known number of training pat-

terns that are geometrically separable. Input patterns are classi�ed by decision

functions. For example, a simple linear classi�er could be de�ned for classes

C1 and C2 by the decision function d(x) according to Equation 2.7:

d(x) > 0 ⇒ x ∈ C1

d(x) < 0 ⇒ x ∈ C2

(2.7)

where d(x) = 0 is the `decision boundary'. If decision boundaries can be de-

�ned such that they separate numerous classes in real space, then the classes

are said to be linearly separable. Non-linear classi�ers exist that use gener-

alised decision functions to distinguish between classes that are not linearly

separable.
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• Minimum-Distance Classi�ers. This scheme usilises distance functions (for

classi�cation) when patterns in a training set graduate toward a number of dif-

ferent clusters15. If each class consists of a single cluster, a minimum-distance

classi�er can be used to classify an input pattern. If each class consists of

multiple clusters, the nearest-neighbour classi�er can be used. Here, the dis-

tances from the input pattern to the patterns in the training set are measured,

and the input pattern is classi�ed as being a member of the same class as its

nearest neighbour (in the training set).

• Statistical (or decision theoretic) Approach. When the patterns of multiple

classes exhibit feature overlap, a statistical approach (for classi�cation) can be

adopted. Statistical pattern recognition is based on statistical characterisation

of patterns. That is, the patterns that originate from statistical distributions.

A statistical classi�er incorporates the risk or probability of mis-classi�cation.

• Fuzzy Classi�ers. The result of classi�cation may not always be certain. That

is, there may be doubt about the result, or the input pattern could be classi�ed

as a member of more than one class. Feature selection may de�ne an ambigu-

ous metric. For example, a general class de�nition for height could be `tall'

or `short'. However, the exact measurement, 173 cm, may be considered to

belong to both classes or neither. To alleviate such problems, fuzzy classi�ers

assume an input pattern to be a member of every class to varying degrees;

the grade (strength or weakness) of membership in each class is expressed as

a value in the continuous interval [0, 1]. By allocating the appropriate grade

of membership, classi�cation can be determined.

• Syntactic (or structural) Approach. Syntactical pattern recognition is based on

the structural inter-relationships between the features of patterns. Examples

of research areas where structural components are used for classi�cation are

character recognition and �ngerprint recognition. It is common to de�ne a

syntax language that describes the structural components of a pattern.

15A cluster consists of a number of similar patterns grouped together.
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Syntax classi�ers are then used to process the resultant symbolic strings rep-

resenting the pattern.

• Arti�cial Neural Networks. This approach assumes a set of training patterns

and their correct classi�cations. The correct classi�cations (for each training

pattern) are used as `targets' when training the neural network. The patterns

are supplied to the neural network via the input layer, and the targets are

used to guide the learning algorithm of the neural network toward correct

classi�cation. Arti�cial neural networks are discussed in more detail in the

next section 2.4.2.

2.4.2 Arti�cial Neural Networks

Arti�cial Neural Network (ANN) models have numerous names such as: connection-

ist models, parallel distributed processing models, and neuro-morphic systems (Lipp-

mann, 1987). Regardless of the name, they attempt to achieve high performance

processing by utilising dense interconnection of simple computational elements.

ANNs are a technology that is well established in subject areas such as: neu-

roscience, mathematics and statistics, physics, computer science, and engineering

(Haykin, 1999). They have been applied to research and development disciplines

such as: mathematical modeling, time-series analysis, pattern recognition, signal

processing, and process control.

The next section (2.4.2.1) discusses the biological model of the human brain, the

operations which an ANN attempts to model, as well as how ANNs learn. Section

2.4.2.2 provides a discussion of a number of prominent ANN architectures.

Section 2.4.3 explains why the Multi-Layer Perceptron (MLP), as a pattern clas-

si�er, is ideally suited to pattern recognition tasks where the data is of a complex

nature, such as the individual and combined feature data sets involved in the current

study. Tried and tested freeware applications of the MLP are available for ease of

implementation. For these reasons, the MLP was used in the current study.
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2.4.2.1 Imitating The Biological Model

An ANN attempts to imitate the computational functionality and memory capacity

of the human brain (Beale and Jackson, 1990). However, an ANN is not biological.

An ANN is a massively parallel distributed processor made up of simple processing

units, which have a propensity for storing experiential knowledge and making it

available for use (Aleksander and Morton, 1990).

Thus an ANN imitates the brain's capacity to (Aleksander and Morton, 1990):

1. Acquire knowledge from its environment through a learning process.

2. Store the acquired knowledge in synaptic weights, via inter-neuron connection

strengths.

The human brain contains approximately 1010 (i.e. ten thousand million) basic

analogue processing units, called neurons (Beale and Jackson, 1990). Each neuron

is connected to about 104 (i.e. ten thousand) other neurons. Figure 2.9 illustrates

the components of a biological neuron.

Figure 2.9: Components of a Biological Neuron
The image was sourced from Jian-Kang, 1994.
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The basic operation of a neuron is to accept many inputs (in the form of nerve

impulses) from dendrites, which are �laments attached to the cell body; these nerve

impulses are received from other neurons (Beale and Jackson, 1990). The neuron

accepts all inputs, and if the accumulated signal (called the `resting potential')

surpasses a critical threshold, the neuron activates; otherwise it remains inactive.

The axon�a component of the cell body that serves as the output channel�acts

as a non-linear threshold device. That is, if a neuron activates (or �res), the axon

produces a series of rapid pulses called the `action potentials'. These pulses are

propelled along the axon, which terminates at the junction of dendrites from other

neurons; such a junction is called a synaptic junction.

There is no actual connection at this junction, rather a chemical reaction when

the synapse's potential is raised su�ciently by the action potential received via the

axon. Neurotransmitters released by the synapse allow for the �ow of ions across the

junction, which alter the dendritic potential and results in a nerve impulse which

is conducted along the dendrite to its cell body. Each dendrite may have many

synapses acting on it, which facilitates massive inter-connectivity.

Synaptic junctions alter the e�ectiveness of the transmitted signal. Thus a

synapse may `excite' or `inhibit' a dendrite. If a dendrite is excited by a synapse, a

large nerve impulse traverses the junction and is conveyed by the dendrite to the cell

body; if a dendrite is inhibited, a small nerve impulse passes to the cell body. The

release of more neurotransmitters increases the coupling at the synaptic junction,

which increases the connection strength.

These modi�cations to the normal connection strength are thought to facilitate

learning. Because the neuron receives all inputs, and the signal strength a�ects the

accumulated resting potential, the �ring of a neuron (i.e. exceeding the threshold

value) is in�uenced by the strength of incoming signals.

The parallel nature of the brain's functionality means that the processing work-

load is distributed across many neurons (Lippmann, 1987). If one neuron malfunc-

tions, its a�ect is unlikely to have a signi�cant impact on the overall result. That

is, the biological brain is generally fault tolerant.
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ANNs attempt to model the operations of the brain, and consist of (Lippmann,

1987; Beale and Jackson, 1990; Haykin, 1999):

1. Simple processing units or elements called nodes (because of their correspon-

dence to the biological neuron, they are often referred to as neurons).

2. An inter-connection topology in the form of weights.

3. A learning scheme.

Thus, ANNs do not attempt to represent each component of the biological neu-

ron, only the functionality of the biological neuron. As the interaction between

biological neurons occur at the synaptic junctions, it is the operations of the synap-

tic junction that ANNs attempt to model.

The model of a simple neuron consists of three basic components (Haykin, 1999):

1. A set of weights expressing the connection strength between the input signals

to the neuron; this is analogous to the synapses of a biological neuron. For an

input signal xi connected to a neuron k, i is the connecting synapse and the

weights are denoted wki
16.

2. A summation function which accumulates the input signals, by multiplying

each input signal by the weight connecting it to the neuron.

3. An activation function for limiting the amplitude of the neuron's output. For

two class problems, binary output is typically 0 or 1. For multiple class prob-

lems, the output range is typically in the closed continuous interval [0, 1] or

[−1, 1].

Figure 2.10 illustrates the components of a simpli�ed non-linear model of a neu-

ron k. Here, the value for each input node is multiplied by its associated weight17.

16Note that this common naming convention has the variable designating the neuron listed prior
to the variable designating the connecting weights.

17Note that because weights are analogous to the signal strength received by dendrites from
synapses in the biological model neuron, larger weight values correspond to excitatory synapses
(which transmit larger pulse signals across the synaptic junction); smaller weight values correspond
to inhibitory synapses.
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The sum of this accumulated resting potential�plus a bias component18 bk�is

then applied to an internal threshold in the activation function. When the resting

potential exceeds the threshold, the neuron activates; otherwise, it remains dormant.

Figure 2.10: Simple Non-linear Model of a Neuron
The image was sourced from Haykin, 1999.

Equations 2.8 and 2.9 describe the mathematical operations of the simpli�ed

non-linear neuron model illustrated in Figure 2.10:

υk =
n∑
i=1

wkixi + bk (2.8)

yk = ϕ(υk) (2.9)

where x1, x2, . . . , xn are the input signals, wk1, wk2, . . . , wkn are the synaptic

weights of neuron k, bk is the bias, υk is the induced activation potential, ϕ is

the activation function, and yk is the output signal of neuron k.

Alternatively, the bias can be incorporated into Equation 2.8 by initialising x0 =

1 (and to always retain this value), wk0 = bk and then de�ning the mathematically

equivalent Equation 2.10 (Beale and Jackson, 1990; Haykin, 1999):

18The bias e�ectively adds an o�set to the accumulated resting potential, and is intended to
increase or decrease the net input into the activation function.
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υk =
n∑
i=0

wkixi (2.10)

Note that because the process �ow of the model neuron is one way, presenting

the inputs and producing the output, it is called a feedforward system.

The activation function ϕ(υk) determines the eventual output of neuron k, and is

dependent on the summation function output υk. Numerous activation or threshold

functions may be applied in determining the eventual output. Thus the choice of

activation function plays an important role.

Figure 2.11 provides three examples of typical threshold functions that are ap-

plied in the activation function (Lippmann, 1987). These are: the step-wise function

(a), the piece-wise linear function (b), and the sigmoid function (c). More complex

nodes may include temporal integration and other types of time dependencies19.

Figure 2.11: Illustrations of Step-wise (a), Piece-wise (b) And Sigmoid (c) Functions

The Learning Process

Human beings (particularly when young) very often learn from positive or negative

reinforcement (Beale and Jackson, 1990). That is, a positive outcome results from

`good' behaviour, while a negative outcome results from `bad' behaviour. Of course,

the interpretation of what is positive and good or negative and bad is subjective to

the situation under observation, but in general this process of reinforcement is often

helpful in the learning process.

19It should be noted, that the step-wise function (Figure 2.11a) is the usual threshold function
applied to the simple model of a neuron discussed thus far because the model produces binary
output (i.e. 0 or 1).
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As with human beings, the simple model neuron can be taught to `learn' from

its mistakes. That is, to reduce the chance of an incorrect or unwanted outcome

from occurring.

To demonstrate, assume two classes A and B. The learning process requires the

following steps (Beale and Jackson, 1990):

1. Assign random values to all weights from the input nodes to the output node.

This corresponds to the state of the neuron knowing nothing.

2. Present an instance of class A input.

3. Perform the actions assigned to the summation and activation functions. If the

resting potential exceeds the internal threshold, output 1; otherwise output 0.

4. For inputs of class A, assuming an output of 1 (the correct answer), do nothing;

assuming an output of 0 (the incorrect answer), increase the resting potential

(by increasing the weight values) so that the threshold is exceeded and the

correct output is produced.

5. For inputs of class B, the neuron should be expected to produce an output of

0. When an instance of class B is input, decrease the weight values to keep

the resting potential below the threshold.

By adjusting the weight values according to the steps 4 and 5, the neuron learns

to recognise instances of class A input, and that instances of class B input are not

instances of class A input. So, the ability to learn is directly attributable to the

storage and adjustment of weight values.

Thus the following rule20 can be de�ned to facilitate learning, by adjusting weight

values (Beale and Jackson, 1990):

1. Increase the weights (on active inputs), when active output (i.e. the value 1)

is required. This can be achieved by adding the inputs to the existing weight

values.

20Note that the rule reinforces active connections only.
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2. Decrease the weights (on active inputs), when inactive output (i.e. the value 0)

is required. This can be achieved by subtracting the inputs from the existing

weight values.

This rule presupposes knowledge of the correct class. That is, knowing that the

input is an instance of class A, and that class A is the intended class. As the rule

guides learning using this knowledge, it is known as `supervised learning'.

When adopting a supervised learning approach, instances of the correct class are

presented to a neuron along with their expected output (i.e. the value 1) (Lippmann,

1987). Also, instances of the incorrect class are presented to the neuron along with

their expected output (i.e. either 0 or -1). The expected output is commonly referred

to as the `target'.

By presenting a neuron with instances of both classes and their respective target

outputs, the neuron learns to correctly classify the intended class. The presen-

tation of incorrect class instances helps the neuron to learn�by adjusting weights

accordingly�not to attribute correct classi�cation to incorrect class instances. That

is, the neuron learns what to classify correctly according to examples of what is cor-

rect, and what is not correct (positive and negative reinforcement).

In 1962 Frank Rosenblatt coined the term `perceptron' to describe a feedforward

ANN composed of one or more simple output neurons that function as discussed thus

far (Beale and Jackson, 1990). This perceptron is the simplest kind of ANN, and can

be considered a binary classi�er, because each neuron outputs either a 1 or a 0; it is

also often referred to as a linear classi�er, because it classi�es two classes according

to the hyperplane that separates the two classes (called the decision boundary).

A perceptron may consist of a single layer; that is, one or more simple output

neurons or nodes making up the output layer21. A perceptron may also consist of

multiple layers; that is, one or more simple output nodes making up the output layer,

with one or more intermediate layers (consisting of one or more nodes) between the

input neurons and the output layer. In such a case, all nodes from all layers have

full inter-connectivity.

21Note that this description does not describe the inputs as a layer.
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ANN Training

In the training process, inputs are presented to a processing element (node) which

apply a summation function to inter-connections (weights) that act upon the inputs.

As inter-connections can be excitatory or inhibitory, the weights can be of larger or

smaller magnitude (which add to or subtract from the accumulated value). When

a speci�c threshold is reached, the node `�res' according to an activation function,

which produces the resultant output.

The result of an activation function can be in the binary domain (that is, dis-

crete values (0, 1)22) or the continuous domain (that is, over the continuous interval

[0, 1]23). Discrete value results are typically classi�ed using the sum-and-threshold

model (for example, a step-wise function�refer Figure 2.11a�or a piece-wise linear

function�refer Figure 2.11b) (Bishop, 1995). This seems a natural choice because

the optimal discriminant function needs to distinguish two classes. Continuous value

results are typically classi�ed using an exponential or logarithmic model (for exam-

ple, the logistic sigmoid function�refer Figure 2.11c).

The output of the activation function is compared with the expected or target

output. The di�erence between the activation function output and the target is

calculated; this di�erence is commonly referred to as the error. The error is added

to each input and the corresponding weights are adjusted (refer Equation 2.12). This

training process continues until error is minimised. The weights are then stored and

used in the testing process.

The number of di�erent outcome classes de�nes the problem space. If there

are two possible outcome classes, there exists a linearly separable problem space

(Masters, 1993). That is, the outcome can only be one class or the other. The

boundary between outcome classes may be linear or non-linear. This boundary is

called the decision boundary, and distinguishes between classes in the problem space.

It also determines the number of output layer nodes the network requires24.

22Note, the discrete values (−1, 1) are sometimes used.
23Note, the continuous interval [−1, 1] is also commonly used.
24That is, each output layer node represents a possible outcome class.
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The behaviour of a neural network, as it attempts to arrive at a solution, can

be thought of in terms of the error or energy function. The energy is a function of

the inputs and the weights. For a given input pattern, the energy function can be

plotted against the weights to determine the energy surface in a three dimensional

space. This can be envisaged as a landscape of hills and valleys, with points of

minimum energy (known as wells) and maximum energy (known as peaks).

If the problem space has more than two possible outcome classes, the error can be

minimised by adjusting weights so they correspond to points of lowest energy (that

is, minimised error). The wells in the error surface may be many, but there will be

one that is deeper than any other. This is the global minimum, and corresponds

to the lowest possible error that can be attained for that input pattern. The other

wells are local minima.

The objective in training the network is for it to reach the global minimum error;

this means that it has trained to most accurately classify that class of pattern. The

weights of the network in this state (that is, when the training objective has been

achieved) are stored for the testing procedure.

ANN Testing

The testing procedure involves constructing an ANN of the same con�guration as

that used during training, and loading the stored weights (resulting from the training

process) into this ANN. Test input patterns are then presented to the ANN. It is

preferable (so that the trained ANN can generalise) that the input patterns presented

for testing have not been used in the training process (that is, di�erent samples of

the same class of input patterns). For the testing procedure, no target outcomes are

provided (Lippmann, 1987).

The summation and activation functions are applied (as previously explained)

and the outputs are produced by the ANN. The type of output is dependent on the

number of decision boundaries in the problem space, which determines the type of

activation function used and therefore the nature of the output data (that is, binary

or continuous).
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It is important to remember that the ANN output resulting from the testing

procedure may or may not be correct. That is, ANNs can, and do, attribute cor-

rect and incorrect class membership. Output in the continuous domain is typically

subject to a �nal classi�cation scheme, where a decision threshold is applied (refer

Chapter 6 section 6.2).

If the nature of the training and testing data exhibits consistency and the ANN

has been well trained, classi�cation should be accurate. However, if the nature of

the training and testing data exhibits variability or the ANN has not been well

trained, the classi�cation may not be as accurate.

For the current study, ANNs were used to classify query inputs as belonging to (or

not) the training group members' classes, according to the training group members'

registered templates. The registered template for a training group member consisted

of the weights of the ANN that had been trained to recognise the pattern of their

training data. During testing, query data sets were applied to the ANN (using the

stored weights for registered templates) to determine correct classi�cation.

ANNs are generally e�ective in solving classi�cation and pattern recognition

problems (Beale and Jackson, 1990), and as shown in the next section, there are

a number of architectural models designed for these types of problems. The archi-

tectural model used in the current research was the Multi-Layer Perceptron (with

error back propagation), because it was well suited to the complexity of the pat-

tern recognition task of this experiment. An explanation of the operations of the

Multi-Layer Perceptron (MLP) is provided in the next section.

2.4.2.2 ANN Architectures

This section describes the architecture (or topology) and properties of some promi-

nent Arti�cial Neural Networks. Firstly, the Single Layer Perceptron is presented,

as it is the simplest ANN architecture and because it is bene�cial to understanding

the Multi-Layer Perceptron. The Multi-Layer Perceptron�which was used in the

current research�is discussed after the Single Layer Perceptron. Following the dis-

cussion of these two architectures, some other architectures of interest are described.
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The Single Layer Perceptron

The Single Layer Perceptron (SLP) is a feed forward network, which has the ability

to learn to recognise simple patterns (Lippmann, 1987; Beale and Jackson, 1990;

Haykin, 1999). It classi�es input data sets into one of two classes (such as class A

or class B).

The architecture for the SLP consists of an input layer25, an output layer, and the

connecting weights (refer to Figure 2.12). This has a close analogy to the simpli�ed

nonlinear neuron model discussed in section 2.4.2.1. In fact, the SLP demonstrates

a similar architecture and functionality to the simpli�ed nonlinear neuron model,

except that there may be multiple output layer nodes.

The simpli�ed illustration of the SLP, in Figure 2.12, consists of only two output

layer nodes; there may be many output layer neurons in a SLP, each of which will

be connected to each of the input layer nodes by an associated connecting weight.

Inputs are supplied to the SLP (via input layer nodes); they and their associated

weights are applied to the summation function in the output nodes. The summed

value has a threshold value subtracted from it, and the result is applied to the acti-

vation function (eg: a step-wise function). An example outcome could be, designate

class A if the output y was +1 or class B if it was −1.

The SLP forms two regions separated by a hyperplane (called the decision bound-

ary), such that inputs which classify to class A are located on one side of the linear

boundary; class B outputs are located on the opposite side. The equation of the

boundary line is dependent on the weights and the threshold value.

To demonstrate the summation and activation functions of the SLP output node,

the following description is presented.

Let wi be the weight corresponding to input i, at time t, for (0 ≤ i ≤ n). Set

w0 = −θ, and x0 to always remain equal to 1. Provide inputs x1, x2, . . . , xn, and the

desired output (or target) d(t). Initialise all other wi(0) to small random values.

25By convention, the input nodes are not counted as a layer (even though they are presented as
such in architectural illustrations). This is because only the output layer has operational nodes.
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Figure 2.12: The Single Layer Perceptron

The output y(t) is calculated according to Equation 2.11:

y(t) = fh

[
n∑
i=0

xi(t)wi(t)

]
(2.11)

where n is the number of input layer nodes, θ is the internal threshold or bias,

and fh is the activation function (eg: step-wise function) used to produce an output.

In order to facilitate learning the SLP repeats Equation 2.11, adjusting all weight

values after each repetition. This process continues until the network converges to

the minimum error.

Adjusting the weights is accomplished according to Equation 2.12:

wi(t+ 1) = wi(t) + η[d(t)− y(t)]xi(t) (2.12)

where η is a gain function to control the adaption rate, for (0 ≤ η ≤ 1). The gain

term controls the rate of weight change, ensuring the network modi�es the weights

by a suitable magnitude26.

26Adjusting the gain term by a smaller magnitude, rather than larger, helps to avoid any tendency
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The target output y is designated according to Equation 2.13:

d(t) =

 +1 if input from class A

0, if input from class B
(2.13)

A major bene�t of this architecture is that the network will resolve to the best

possible output (that is, it will always �nd the global minimum error). However, as

demonstrated by Equation 2.13, this architecture is suitable only when there are two

classes of possible outcomes (that is, it can only solve linearly separable problems

of two outcome classes).

The Multi-layer Perceptron

The Multi-Layer Perceptron (MLP) is able to classify along n dimensional decision

boundaries in the problem space, by utilising a non-linear threshold function and

by incorporating extra layers of nodes in its con�guration (Lippmann, 1987; Beale

and Jackson, 1990; Haykin, 1999). These modi�cations solves the limitation of the

SLP (i.e. of only being able to solve two class problems) and allow the MLP to

classify complex data (i.e. data demonstrating multiple classes in multi-dimensional

problem space).

Like the SLP, the MLP has a feed forward operation. However, as illustrated

in Figure 2.13 the architecture is quite di�erent27. There are at least two layers of

nodes in a MLP28; the input layer, the output layer and one or more hidden layers

in between. Just as the output nodes in the SLP function as individual perceptron

units (i.e. simple neuron models), so the hidden and output layer nodes of the

MLP function as perceptron units. That is, nodes in all layers (excluding input

nodes) accept input, apply the input to the summation and activation functions,

and produce an output.

to oscillate between extreme weight values as the network trains toward minimum error.
27Note that unlike in Figure 2.12, Figure 2.13 does not include labels for the weight connections

between nodes. This was done to keep the illustration less noisy, and thus make the con�guration
di�erences clearer. The weight labeling convention used in Figure 2.12 would be the same for
Figure 2.13.

28Input nodes perform no computational operations and are not counted as a layer.
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Figure 2.13: The Multi-Layer Perceptron

A notable di�erence between the MLP and the SLP is that the activation function

applied in the MLP re�ects the complex nature of the problem space. Because more

than two classes are being classi�ed, the step-wise function is no longer appropriate.

As such, an exponential or logarithmic model is more appropriate; typically the

most commonly applied function is the logistic sigmoid function. Therefore, node

outputs are in the continuous domain rather than the binary domain.

As previously discussed, the number of input layer nodes is determined by the

input pattern, and the number of output layer nodes must match the number of

di�erent classes in the problem space.

However, the number of middle layer nodes has no speci�c method of determi-

nation. A rule of thumb is to assign half the number of input layer nodes as a

temporary value for the number of middle layer nodes. Then increment or decre-

ment the number of middle layer nodes and test the error at each adjustment, until

the lowest error rate is attained.
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Because the MLP exhibits a modi�ed con�guration to the SLP, and utilises a

di�erent activation function (i.e. sigmoid compared to step-wise), the learning rule

of the SLP requires modi�cation for the MLP (Beale and Jackson, 1990; Haykin,

1999). Input is presented to the network; comparison is made between the network

output and the desired target; the error is determined and can then be used to

update the weights (and produce successively more accurate output).

The type of activation function used in MLPs allows for continual reduction of

error values by small increments, and thus the network output gradually approaches

the desired target. This is achieved by using the `generalised delta rule' to calculate

the error values for that input (at the output layer), and adjusting weights by back-

propagating the error through the network to the previous layers. This functionality

is responsible for the MLP being often termed the back-propagation neural network.

Nodes in the hidden layers are adjusted in proportion to the error in the nodes

(of the output layer) to which they are connected. So if an output node has a

larger error value, the connected hidden layer nodes use a value proportionate to

the output layer node (rather than the same error value). This allows the network

to learn, as the method of error reduction facilitates correct adjustment of weights

between the layers.

To demonstrate the operations of the MLP, the following description is pre-

sented (Lippmann, 1987; Beale and Jackson, 1990). Provide input pattern Xp =

x0, x1, . . . , xn−1; the desired output (or target) Tp = t0, t1, . . . , tm−1; and wi the

weight corresponding to input i for (0 ≤ i ≤ n), where n is the number of input

layer nodes and m is the number of output layer nodes.

Set w0 = −θ, and x0 to always remain equal to 1. Initialise all other wi to small

random values.

Let ypj be the actual output values for pattern p on node j, calculated for each

node for each layer according to Equation 2.14:

ypj = f

[
n−1∑
i=0

wixi

]
(2.14)

Note opj denotes the output layer values for pattern p on node j.
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Adjusting the weights is accomplished according to Equation 2.15, starting from

the output layer nodes (and progressively working backward through each layer of

the network):

wij(t+ 1) = wij(t) + ηδpjopj (2.15)

where wij(t) represents the weights from node i to node j at time t, η is the gain

term, δpj is the error term calculated for pattern p on node j.

Equation 2.16 de�nes the error term for the output layer nodes:

δpj = kopj(1− opj)(tpj − opj) (2.16)

Equation 2.17 de�nes the error term for the hidden layer nodes:

δpj = kopj(1− opj)
∑
k

δpkwjk (2.17)

Note that the �rst expression kopj(1 − opj), in equations 2.16 and 2.17, is the

derivation of the sigmoid function29. Also, the latter expression (tpj − opj), of equa-

tion 2.16, incorporates the desired output or target tpj, whereas the latter expression∑
k δpkwjk, of equation 2.17, incorporates the sum of error terms δpk. Here k desig-

nates all nodes in the layer preceding the layer where node j is situated. Therefore,

the sum of δpk is calculated from node j to all nodes k. Thus the error is back-

propagated through the network proportionately.

As discussed in the previous section, the error or energy surface can be deter-

mined as a function of the input and weights. As the MLP has more layers of nodes

than the SLP, the energy surface becomes more complex and can be populated with

numerous local minima; but still only one global minimum.

In order to assist training, so that the minimum error is attained, there are two

parameters that may be used in calculations when updating weight values. One,

the gain term�discussed previously�is used to speed or slow progress toward a

29For the mathematical proof of this derivation, refer to (Beale and Jackson, 1990) Chapter 4
section 4.4.1.
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minimum (local or global) error rate. The other parameter is the `momentum'

term, which is used as stimulation of the network during training; to jump out of

local minima and eventually (hopefully) settle in the global minimum.

The summation function (equation 2.14) is applied to the inputs and weights

(between the input and the �rst hidden layer of nodes); the node outputs from each

successive hidden layer are calculated, and these values become the inputs for the

next layer of hidden nodes; this continues until the last layer of hidden nodes pass

their outputs as inputs for the output layer nodes.

The error values (which are calculated to incorporate targets and the activa-

tion function) are then propagated backward through the network and are used to

successively update all weights (according to equations 2.15, 2.16, and 2.17). Once

the weights between the input layer and the �rst layer of hidden nodes have been

updated, the feedforward process begins again with the network status altered by

the newly updated weights (and possible adjustment to the gain and momentum

terms). This process continues until the error rate is minimised.

One negative feature of the MLP is that during the training phase, the error

rate will not always easily�if at all�resolve to the global minimum. Quite often

the error rate gets ensnared in one of many local minima on the error surface, and

requires stimulation by the momentum and gain terms to escape it. This means

that training a MLP requires quite a bit of trial and error testing, by manually

manipulating the number of middle layer nodes and the momentum and gain terms,

in order to reach the optimum e�ciency and accuracy.

The next section (2.4.2.2) discusses the architecture and properties of the Hop-

�eld Neural Network.

Hop�eld Neural Network (HNN)

The Hop�eld neural network is an auto-associative network. The auto-association

of patterns means that presentation of corrupt or incomplete input will result in

the reproduction (as output) of the original pattern (Lippmann, 1987; Beale and

Jackson, 1990). The network thus works as a content addressable memory (CAM).



102 CHAPTER 2. BACKGROUND

As illustrated in Figure 2.14, the architecture of the HNN consists of a number of

nodes (visualised as one layer), each of which are connected to each other node (but

not itself). Therefore, the HNN is a fully connected network, with binary inputs

and outputs (that is, values of (0, 1) or (−1, 1)). Also, the network is symmetrically

weighted (that is, any weight wij = wji).

The di�erence in architecture between the HNN and perceptrons means the

HNN operates in a di�erent way. The network is left to cycle through a succession

of states until it converges on a stable solution; this occurs when node values no

longer change. The �nal network output is taken to be the value of all nodes in this

�nal stable state. Because of the fully inter-connective property, the value of one

node a�ects the value of all nodes.

In their initial state each node represents di�erent values (received as inputs),

with each node trying to a�ect the others; thus the network is initially in an unstable

state. During operation, some nodes may attempt to turn other nodes `on', while

some other nodes may attempt to turn other nodes `o�'.

As the network progresses through successive states, it works toward a state (by

a system of `compromise') where all nodes settle into a stable state (representing

the `best compromise'). At this point there are as many inputs attempting to turn

a node on as there are inputs attempting to turn a node o�.

Training involves one iteration per pattern presented to the network. Only the

weights are adjusted by calculating the cross product of the input vector. Each

successive input vector updates the weight matrix. The top-left to bottom-right

diagonal values are set to 0.

Testing involves many iterations. Input is presented to all nodes simultaneously,

and the network is left to stabilise. Updating of nodes occurs via weighted sum and

a hard limiting step-wise function. Output of each node becomes the input fed back

to the other nodes (but not itself). Outputs from the nodes in the stable state form

the output of the network. So when presented with an input pattern, the network

outputs a stored pattern nearest to that presented input pattern.
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Figure 2.14: The Hop�eld Neural Network

The Hop�eld network has no learning algorithm as such. Patterns (or facts) are

simply stored by setting weights to lower the network energy (or error).

The training stage occurs according to Equation 2.18:

wij =


M−1∑
s=0

xsix
s
j i 6= j

0 i = j, 0 ≤ i, j ≤M − 1

(2.18)

where wij is the connection weight between node i and node j, xsi is the ith

element of the exemplar pattern for class s, M is the number of pattern classes.

Note that for each weight, the product of the input i and input j is added to

the existing weight. Therefore, the result of the training stage is the association of

a pattern with itself.

Initialisation for the testing stage occurs according to Equation 2.19:

µi(0) = xi 0 ≤ i ≤ N − 1 (2.19)

where µi(t) is the output of node i at time t.
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Nodes are updated according to Equation 2.20:

xi = xiwijxj (2.20)

where input xi represents the node being updated, input xj represents the input

into that node, and wij is the weight connection.

The network is allowed to iterate freely (in discrete time steps) until it converges.

Note that the output of the network is forced to match that of the imposed unknown

pattern.

Convergence during the testing stage occurs according to Equation 2.21:

µi(t+ 1) = fh

[
N−1∑
i=0

wijµi(t)

]
0 ≤ j ≤ N − 1 (2.21)

where fh is the step-wise function.

If the input i > 0, its output is 1; if the input i < 0, its output is -1 (or 0);

otherwise, the input value is left as it is. These values are then fed back into the

network as input into the other network nodes.

The advantage of the HNN, as an auto-associative network, is that data can be

retrieved (via its CAM functionality) even when incomplete or corrupt information

is presented to it.

However, a limited number of patterns can be stored and recalled in a HNN; this

has an impact on its applicability for many pattern recognition tasks (Beale and

Jackson, 1990). Also as mentioned previously, the HNN has no learning algorithm

as such. As the current experiment required an ANN to possess the ability to learn

patterns in data, the HNN was not chosen.

The next section (2.4.2.2) discusses the architecture and properties of the Self-

Organised Map.

Self-Organised Map (SOM)

The type of learning utilised in a multi-layer perceptron requires the correct response

(target) to be provided during training (Lippmann, 1987; Beale and Jackson, 1990;

Haykin, 1999). This approach is known as supervised learning. Though biological



2.4. PATTERN RECOGNITION AND ARTIFICIAL NEURALNETWORKS 105

systems display this type of learning, they are also capable of learning by themselves.

Learning without the assistance of targets is known as unsupervised learning.

A system with the capability to learn unsupervised, requires self-organisation.

During training, such a system learns appropriate associations without any targets

(or prior knowledge) being provided.

An ANN model of this type is the Self-Organising Map (SOM), also known as the

Kohonen Network (after it founder Dr. Teuvo Kohonen). The SOM is a competitive

neural network; such networks represent a type of ANN model where nodes in the

output layer compete with each other to determine a `winner'. The winner indicates

which prototype pattern is most representative of the input pattern.

As illustrated in Figure 2.15, the SOM has only one layer of nodes (the com-

petitive layer or sometimes referred to as the Kohonen feature map). This layer is

two dimensional, with lateral interconnections forming a grid like topology. Note

that the architecture (with only one layer of nodes) is di�erent to the hierarchical

structure of layers in perceptrons.

All inputs are connected to every node in the competitive layer. There is no des-

ignated output layer; each node in the competitive layer is an output node. As there

is only the one layer of nodes, error cannot be fed backwards through the network.

Instead, feedback is facilitated via the lateral interconnections of neighbouring nodes

in the competitive layer.

When presented with the training input data, the learning algorithm organises

the competitive layer nodes into local neighbourhoods that act as feature classi�ers.

The topology of nodes is con�gured by the cyclic process of comparing input patterns

to vectors stored at each node.

Where inputs match the node vectors, that area of the feature map is optimised

to be representative of that class of training data. From its initial state, the network

`settles' into a feature map that has local representation and is self-organised. The

following formulae de�ne the operations of the SOM.
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Figure 2.15: The Self-Organising Map (SOM)

Let wij(t) be the weights from input i to node j at time t. Initialise (with small

random values) the weights from n inputs to the all nodes. Set to large, the initial

neighbourhood around node j, Nj(0). Present inputs x0(t), x1(t), x2(t) . . . xn−1(t),

where xi(t) is the input to node j at time t.

For each node j, calculate distance dj from input xi to node j, according to

Equation 2.22:

dj =
n−1∑
i=0

(xi(t)− wij(t))2 (2.22)

Determine the node with the minimum distance and designate that node as j∗.

With a neighbourhood size set to Nj∗(t) around node j∗, update the weights

between node j∗ and its neighbours according to Equation 2.23:

wij(t+ 1) = wij(t) + η(t) (xi(t)− wij(t)) (2.23)

where j is in the neighbourhood Nj∗(t), (0 ≤ i ≤ n − 1), η(t) is the gain term

(0 < η(t) < 1) that decreases in time to slow weight adaption.
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Note, all nodes in the neighbourhood of j have their weights updated, by applying

a proximity factor σ(t) to the latter expression of Equation 2.2330. Importantly, the

updating of weights does include any adjustment to the lateral interconnections

of the competitive layer. It was previously stated that feedback is restricted to

neighbours through the lateral interconnections. These interconnections do not have

weight values themselves. They provide excitatory and inhibitory signals based on

their proximity to their neighbours; that is, a node has excitatory connections to its

immediate neighbours, and inhibitory connections to more distant nodes. All nodes

in the competitive layer receive a mixture of excitatory and inhibitory signals from

other competitive layer nodes (and of course from input layer nodes).

The weights that are updated (according to Equation 2.23) are those from the

input layer nodes to the competitive layer nodes. The adjustment takes the form

of a fractional factor applied to these weights. The proximity to the winning node

determines the factor applied to the adjustment of weights.

As an input pattern is presented, some of the nodes are su�ciently activated to

produce outputs which are fed back to other nodes in their neighbourhoods (via the

weight adjustment process). The node with the weight vector closest to the input

pattern vector (the winning node) produces the largest output.

During training, input weights of the winning node and its neighbours are ad-

justed to make them resemble the input pattern even more closely. At the comple-

tion of training, the winning node ends up with its weight vector aligned (identi�ed)

with the input pattern and produces the strongest output whenever that particular

pattern is presented. Nodes in the winning node's neighbourhood also have their

weights modi�ed to settle to an average representation of that pattern class. As a

result, unseen patterns belonging to that class are also classi�ed correctly.

The reason for not utilising the SOM for the current experiment is because of

its primary purpose. The SOM has the basic property of clustering similar objects

close to each other on the feature map. Conceptually, a visual inspection of the

feature map would indicate the clusters and thus the similarity relationships within

the data set.

30i.e. η(t)σ(t) (xi(t)− wij(t)).
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However, the current experiment required exact classi�cation of data. Classi�-

cation is an ordering of objects into prede�ned classes. By ordering of objects into

n-classes the n-dimensional output layer must be de�ned. The SOM has no output

layer as such, and therefore could not meet the requirement of the experiment.

The next section (2.4.2.2) discusses the architecture and properties of another

ANN that utilises unsupervised learning: the Adaptive Resonance Theory model.

Adaptive Resonance Theory (ART)

The Adaptive Resonance Theory (ART) was developed to model a massively par-

allel architecture for self-organising neural pattern recognition networks, based on

biological and behavioural data (Beale and Jackson, 1990).

The ANNs discussed in previous sections are implemented in two separate op-

erational stages. Whilst during the training stage, these ANNs allow parameters

and weights to be modi�ed (until minimum error is achieved), the parameters and

weights cannot be changed once training has ceased and testing begun (if the net-

work is to be maintained in a stable state or condition). It means that the networks

are not able to learn new information once training has ceased. This limitation is

referred to as the stability-plasticity problem.

The ART has the ability to switch between a learning mode and a classi�cation

mode, without adversely a�ecting previous learning. As illustrated in Figure 2.16,

the ART has a two layered architecture. As well as presenting input to the network,

the input layer also provides a comparison functionality; the output layer produces

network output and also provides a recognition functionality.

The nodes of each layer are connected to each other via weights, with the output

layer nodes providing feedback to the input layer31. The ART incorporates feedfor-

ward weight vectors from the input layer to the output layer, and feedback weight

vectors from the output layer to the input layer. The nodes of the output layer also

provide feedback to each other; this feedback takes the form of lateral inhibition.

31For the sake of image clarity, weights in Figure 2.16 are shown between only four input layer
nodes and two output layer nodes. Obviously in a real-world system, all input layer nodes would
be connected to all output layer nodes.
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Figure 2.16: Adaptive Resonance Theory (ART)

The ART model also includes a control unit for each layer (control-1 for the

input layer and control-2 for the output layer), which are responsible for data �ow

between layers during the operational cycle.

A reset unit provides functionality to reset output layer nodes (i.e. shut o�

all currently active nodes for a period of time, without a�ecting the ability of any

inactive nodes to become active). The reset unit also performs a `vigilance' test to

determine whether to create new nodes (at the output layer) to accommodate a new

class pattern; this would occur in the event of a new input pattern being presented

to the network (Lippmann, 1987; Beale and Jackson, 1990).

Input layer nodes have three components; the input signal xi, the feedback sig-

nal from output layer nodes, and the control-1 sentinel value. In the initialisation

phase, control-1 determines which operational task the input layer should perform;

accept input or perform comparison. If valid input is presented to the network,

control-1 sets the sentinel value of each input node to 1. If any node at the output

layer becomes active, control-1 sets the sentinel value of each input node to 0 (thus

switching to comparison mode).
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The output layer control unit (control-2) sets the sentinel value of each output

node to 1 when valid input is presented to the network; these sentinel values get

set to 0 if and when the vigilance test fails. The feedforward weight vectors are

initialised to wi = 1
(1+n)

, where n is the number of input layer nodes; the feedback

weight vectors are initialised to 1.

In the recognition phase, input presented to the network is matched against the

classi�cation represented at each output layer node. If any two components of an

input layer node are active, the node output has the value 1 (otherwise it is 0).

Each weight vector at each output layer node can be thought of as a stored

template or exemplar weight vector for the current input pattern. Based on the

comparison between the dot product of the input vector and the exemplar weight

vector at each output layer node, the `winning node' is determined (i.e. the node

with the largest dot product). Note that the lateral inhibitions between nodes in

the output layer also in�uence the determination of the winning node.

The winning node then passes its stored template back to the input layer (via

its exemplar feedback weight vector). Because the output layer now has an active

node (i.e. the winning node), control-1 sets the sentinel value of each input node to

0. The two vectors (i.e. the input vector and the exemplar feedback weight vector)

have an AND operation performed on them, which produces a new vector called the

`comparison vector'. This is passed to the reset circuit along with the input vector.

The reset circuit tests the similarity of the two vectors against the vigilance

threshold according to Equation 2.24:

S =

∑
tijxi∑
xi

(2.24)

where tij are the feedback weight vectors from node j to nodes i.

If S > ρ (where ρ is the vigilance threshold), class membership (for the current

input vector) is indicated for the winning node; otherwise the correct exemplar

pattern has not been determined, and a search is made for another matching vector.

The current winning node is disabled and prevented from further participation, and

the procedure repeated to �nd another winning node.
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The following equations provide the mathematical operations of the ART. Firstly,

weights are initialised: tij(0) = 1 and wij(0) = 1
(1+N)

, where tij(t) is the feedback

weight vector between nodes i and j at time t, and wij(t) is the feedforward weight

vector between nodes i and j at time t. M is the number of output nodes (0 ≤ j ≤

M − 1) and N the number of input nodes (0 ≤ i ≤ N − 1).

After presenting new input, compute the matching score (to determine the win-

ning node) according to Equation 2.25:

µj =
N−1∑
i=0

wij(t)xi (2.25)

where µj is the output of node j (for 0 ≤ j ≤ M − 1), xi is the i
th element of

the input vector (with possible values 0 or 1 only), and wij(t) are the feedforward

weight vectors from node j to nodes i at time t.

The recognition phase begins by determining the exemplar node µj∗ according

to µj∗ = maxj(µj). Preliminary calculations for the vigilance test are accomplished

according to Equations 2.26 and 2.27:

||X|| =
N−1∑
i=0

xi (2.26)

||T ·X|| =
N−1∑
i=0

tij∗(t)xi (2.27)

where xi is the i
th element of the input vector, and tij∗(t) are the feedback weight

vectors from exemplar node j∗ to nodes i, at time t.

Next perform the following inequality test according to Equation 2.28:

||T ·X||
||X||

> ρ (2.28)

where ρ (for 0 ≤ ρ ≤ 1) is the vigilance threshold.

If the result of Equation 2.28 was FALSE, disable the current exemplar node µj∗,

set the output of node j∗ to 0, and search for a new µj∗.
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If the result of Equation 2.28 was TRUE, adjust the exemplar weight vectors

(both feedback and feedforward) according to Equations 2.29 and 2.30 respectively:

tij∗(t+ 1) = tij∗(t)xi (2.29)

where tij∗(t) are the feedback weight vectors from exemplar node j∗ to nodes i,

at time t.

wij∗(t+ 1) =
tij∗(t)xi

0.5 +
N−1∑
i=0

tij∗(t)xi

(2.30)

where wij∗(t) is the feedforward weight vector to exemplar node j∗ from nodes

i, at time t.

Finally after updating weights, enable any disabled nodes and repeat the process

by presenting a new input pattern.

The above basic operations of the ART demonstrate the ability to deal with

binary input only; this imposing limitations on its use for a wide variety of ap-

plications. Subsequent innovations to the original ART allow for continuous data

input. The original ART is thus referred to as ART-1, and the subsequent versions

as ART-2 and ART-3. These versions have not been discussed here, as this section

was intended to provide background of the basic ART-1 operations.

The ART has the advantage of continuing to learn new information and con-

tinually re�ne existing knowledge (Beale and Jackson, 1990). This allows for the

addition of new patterns without a�ecting already learned information or the speed

of the classi�cation process.

However, the ART was not used in the current experiment because of the fol-

lowing disadvantages (Beale and Jackson, 1990):

• It has demonstrated an inability to handle noisy data.

• Implementation and tuning of a network can be complex.

• The network is highly sensitive to parameter changes.
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• Reliance on a single node (in the storage layer) that represents a particular

pattern reduces reliability.

The next section highlights the properties of the Multi-Layer Perceptron which

make this architecture ideally suited for the task of pattern recognition.

2.4.3 The Multi-Layer Perceptron As A Pattern Classi�er

This section explains why the Multi-Layer Perceptron is suited to pattern recognition

problems, and thus was chosen as the architecture utilised for the experiment in this

study. That is, what properties the MLP exhibits which make it suitable for such

tasks. Also presented are some measures that can be undertaken to assist MLP

training.

As discussed in section 2.4.2.2, the MLP �rst presents an input pattern to the

�rst layer of hidden nodes. This layer of nodes produces output which is then passed

to the next layer (either a second hidden layer or the output layer). Because each

node performs the functionality of a perceptron unit, each �rst layer node output

de�nes a single plane of separation between two classes (Lippmann, 1989; Beale and

Jackson, 1990).

A node in the second layer (hidden or output), receiving input from two nodes

in the �rst hidden layer, performs a logical AND operation if its threshold is set to

`on' (with the prerequisite that both previous layer outputs are `on'). Since each

of the previous layer nodes de�ne a linear classi�cation in the pattern space, the

receiving node produces classi�cation based on a combination of these lines.

There may be many nodes in the �rst hidden layer; thus at the second layer

(hidden or output) the combination of all linear classi�cations (corresponding to

each node output from the �rst hidden layer) partitions the pattern space to form

a convex region (called a convex hull). A convex hull is de�ned as a region where

any point can be connected to any other point by a straight line that does not cross

the boundary of the region. Thus the convex hull comprises a region where the

intersection of all linear classi�cations occur.



114 CHAPTER 2. BACKGROUND

If a third hidden layer were to be added, the nodes of this layer would receive

convex hulls as input (from the second hidden layer nodes). Thus a third layer

would provide the facility to de�ne arbitrary shapes. Whether a third hidden layer

is added or not, it is clear that the MLP is very well suited to classifying data of a

complex nature (and determining patterns within that data).

In general, MLPs exhibit the following properties or characteristics which make

them ideally suited for application to the task of pattern recognition (Lippmann,

1989):

• They can solve problems that are too complex for conventional technologies;

that is, problems that do not have an algorithmic solution or where an algo-

rithmic solution is too complex to be computationally viable.

• They can be e�ectively applied to intelligence applications where a real-time

response, using complex real-world data, is necessary.

• They can accurately associate input patterns to their correlated output pat-

terns. The storage and summing functionality of MLP nodes facilitates their

`learning' capabilities (thus simulating the biological neuron). When tested

with unknown instances, they exhibit inference capabilities.

• They have the capability to generalise. That is, if provided with a subset

of available samples, the MLP can be guided�during the training phase�

to accurately detect patterns, and then to correctly classify them in unseen

samples (of the same class pattern) during the testing phase.

• They are robust and fault tolerant systems, and frequently produce reduced

error rates when compared to conventional approaches. This property allows

them to recall full patterns when presented with incomplete or noisy patterns.

The following steps can be undertaken to assist MLP training, and thus improve

the MLP capacity for discerning patterns in data (Wong et al., 2005):

1. The use of cross validation during the training process. This has the e�ect

of `smoothing' data to reduce the e�ect of noise and variability, and prevent
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over �tting. Cross validation involves selecting a small subset of the available

training samples for validation during the training process. That is, as the

MLP is training or learning, additional samples are used by the algorithm to

reinforce correct learning.

2. Prior statistical analysis of the data. This further enhances the learning capa-

bility of the MLP during the training process. Analysis involves the identi�ca-

tion of features responsible for data noise. For instance, higher frequencies of

values at the extremities of a normal distribution indicate noisy data. Thus,

by selecting features less a�ected by noise (thereby removing those responsible

for noise), the MLPs ability to discern patterns in the data is improved.

3. The use of a large number of hidden layer neurons to reduce the e�ect of bias,

and to prevent under �tting. Selection of the number of hidden layer neurons

is typically a trial and error process, because there is no de�nite method or

rule for this determination. Kasabov (1996) suggested starting with half the

number of input layer neurons, and adjusting that quantity (up and/or down)

until a satisfactory result is achieved.

As indicated by point 2 above, pre-processing data (to remove features respon-

sible for noise) may greatly improve the performance of the MLP. The following

attributes further highlight the bene�t of pre-processing data for a pattern recogni-

tion system (Bishop, 1995):

• The pre-processing tasks, of identifying appropriate features to represent pat-

terns and the subsequent extraction of those features, result in prior knowledge

being obtained from the raw data. Obtaining prior knowledge for any task in-

volving supervised learning could be seen as bene�cial.

• Reducing the number of inputs (by such pre-processing), often leads to im-

proved performance by mitigating (at least to some degree) the curse of di-

mensionality.
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So as well as being bene�cial to MLP training by providing prior knowledge,

pre-processing also improves e�ciency in the training process by reducing the input

pattern space.

For all of the above reasons, the MLP with back-propagation was selected for

use in the current experiment (refer Chapter 5). In the experiment, one MLP was

trained to recognise the input pattern of each training group member. As there

were three phases of the experiment, there were three types of input patterns (one

type for each phase) presented to the MLP for each participant. The three types

of patterns corresponded to keystroke dynamics data (refer Chapter 5 section 5.4),

�ngerprint feature data (refer Chapter 5 section 5.5), and data resulting from the

fusion of the other two types (refer Chapter 5 section 5.6).

The next section concludes this chapter by summarising the relevance of this

chapter to the overall discussion.

2.5 Conclusion

This chapter provided a discussion on three areas of study associated with the exper-

iment conducted for this dissertation. The material presented provided background

to help understand these associated areas, and why certain choices may have been

made during the experimental stage of the study.

The �rst area of study associated with this dissertation, was that of biometrics

(section 2.2). An overview of biometrics was presented in section 2.2.1, which in-

cluded its de�nition as the personal characteristics that make individuals unique.

Also discussed were reasons why biometrics provide an alternative to traditional au-

thentication procedures, the di�erence between physical and behavioural biometric

characteristics (their advantages and disadvantages), and the biometric technologies

that have evolved in this area.

The components of a biometric authentication system were discussed in section

2.2.2. These include a capture module, a feature extraction module, a matching

module, and a decision module. The requirements of a biometric characteristic, for

use in a biometric authentication system, were presented as: universality, unique-
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ness, permanence, and collectability. The biometric authentication system also needs

to consider performance, acceptability, and circumvention. Also, the two phases of

biometric authentication system (enrolment and validation) were described.

As with any system, possible errors require identi�cation and performance re-

quires measurement. Two system error rates (the failure to capture rate and the

failure to enroll rate) were described in section 2.2.3; this section also discussed

the performance variables used to present experimental results (the false acceptance

rate, the false rejection rate, and the equal error rate).

A description of a number of well known biometric characteristics�for possible

use in a biometric authentication system�was provided in section 2.2.4. These

included facial recognition, iris and retinal pattern recognition, speaker recognition,

�ngerprint and palmprint recognition, hand geometry, keystroke dynamics, signature

recognition, gait recognition, and body odor recognition.

The material presented in section 2.2 was researched in an e�ort to understand

the requirements of a biometric authentication system, and to identify two biometric

characteristics that could be utilised for the current investigation. The choice of

which two biometric characteristics to utilise was based on the ability to achieve

accurate veri�cation, and operational considerations in terms of cost e�ectiveness

and ease of use in a biometric authentication system. A detailed discussion of the

two biometric characteristics chosen for the current experiment, and reasons for their

selection, is provided in Chapters 3 and 4.

Section 2.3 discussed the areas of data fusion and multi-modal biometrics. An

overview of data fusion was presented in section 2.3.1, where the data fusion paradigms

(refer section 2.3.1.1), the data fusion levels (refer section 2.3.1.2), and data align-

ment (refer section 2.3.1.3) issues were described. Section 2.3 also provided an

overview of multi-modal biometrics in section 2.3.2. Data fusion levels (as applied

to this area of research) were discussed in section 2.3.2.1, and a review of related

literature was presented in section 2.3.2.2.

An overview of pattern recognition and Arti�cial Neural Networks was presented

in section 2.4. Section 2.4.1 provided an overview of pattern recognition, and some
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classi�cation schemes were described in section 2.4.1.1. Arti�cial Neural Networks

were discussed in section 2.4.2. Section 2.4.2.1 explained how ANNs attempt to

model the functionality of the biological neurons in the human brain, and section

2.4.2.2 described a number of di�erent ANNs architectures and their operations.

Section 2.4.3 explained why the Multi-Layer Perceptron is particularly suited to

pattern recognition problems, and the reason why this ANN architecture (in prefer-

ence to other ANN architectures) was used for the experiment in this study.

In the next chapter an in-depth discussion of the biometric characteristics keystroke

dynamics is presented.



Chapter 3

Keystroke Dynamics

3.1 Introduction

This chapter provides a discussion of the biometric characteristic known as keystroke

dynamics. The overview of the subject area provides the conceptual basis of keystroke

dynamics (refer section 3.2).

Section 3.3 describes the possible metrics that may be used for experimentation

in this area of research, including those used in the current study. The calculation

of metrics for the current study is described in Chapter 5 section 5.4.3.

Keystroke dynamics metrics exhibit higher degrees of variability than some other

biometric characteristics; thus it is not recognised to be as accurate as some of

the other characteristics. Section 3.4 provides a review of research e�orts in this

area to demonstrate that keystroke dynamics can con�dently be used, provided the

appropriate issues are carefully considered.

Finally, section 3.5 summarises a number of the issues associated with the ap-

propriate use of keystroke dynamics, and section 3.6 concludes the chapter.

3.2 Overview of Keystroke Dynamics

Keystroke dynamics is a behavioural biometric characteristic that involves analysing

a computer user's habitual typing pattern when interacting with a computer key-

board (Monrose and Rubin, 2000).

119
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Typing involves predominantly subconscious control of �nger movement (at least

for those who type regularly); it incorporates movement characteristics that are

di�erent between individuals and consistent over time (Gaines et al., 1980). The

habitual nature of typing facilitates the development of a `typing signature' that

is distinguishable enough between people to be used for authentication purposes

(Gaines et al., 1980).

When analysing typed samples from di�erent people, examination of the times

between keystroke events reveals a de�nite pattern for each person. Digraph is a

term used to describe a pair of typed characters. Digraph time is the time taken

from the depression of the �rst key to the depression of the following key. It is also

termed keystroke time or keystroke latency1. For example, when typing the digraph

�th�, di�erent people will achieve a di�erent keystroke latency for this character pair.

By combining the keystroke latencies for all pairs of characters in a typed text, a

de�nite pattern for each person becomes evident.

Digraphs are analysed because they are the most elemental typing unit (as op-

posed to analysing the time taken to type a complete word or a sentence or a

paragraph) (Gaines et al., 1980). Keystroke latency�based on digraphs�allows

for a �ne granularity in the calculation of metrics that may be used to discern a

pattern; it is a basic metric, which can be calculated according to time di�erences

between successive pairs of digraphs or keystroke combinations. As such, a vector

of metrics is determined for each person, which describes a unique pattern for that

person. There are other possible metrics which allow for an even �ner granularity

than keystroke latency. A full discussion of the possible metrics and how they are

calculated is given in section 3.3.

When analysing a pattern for the purpose of initial authentication (i.e. logging

on), veri�cation is performed at a discrete time (the time of attempted authentica-

tion). This is termed `static veri�cation' (Maher et al., 1995). Once a claimant has

been authenticated, no further attempt is made to verify the claimant's identity.

That is, the authentication procedure has accepted that the claimant is who they

profess to be.

1Keystroke latency will be used to describe this metric for the remainder of this document.
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However, if further veri�cation is deemed necessary, analysis of a claimant's typ-

ing pattern can be performed on a periodic basis, during the period they are logged

on. That is, after initial authentication, the claimant's ongoing interaction with

the computer can be periodically monitored. This is termed `dynamic veri�cation'

(Maher et al., 1995), and can be useful as a subsequent check of identity. For in-

stance, it can be used to determine if another user has gained unauthorised access

to a terminal, in the temporary absence of the legitimate user.

Important considerations when attempting authentication based on keystroke

dynamics are:

• Is the objective to determine the identity of a user from among a population

(identi�cation) or to verify a claimed identity (veri�cation)?

• Is the intent to perform static or dynamic veri�cation?

• What text length should be used for analysis of the typing pattern (i.e. no

speci�c length or a pre-determined length)?

• Should standard text or a prefabricated character string be used?

• What metrics should be used in the analysis of keystroke characteristics? A

full discussion of keystroke metrics is given below in section 3.3.

• What method of analysis should be used when performing pattern recognition?

A number of early studies used deterministic statistical methods. However, in

the last two decades, a number of studies have used Arti�cial Neural Networks

(ANNs) and other machine learning techniques.

These issues and experimental validity will be considered in the review of relevant

literature (section 3.4). The next section however, describes in detail the possible

metrics that can be used in the analysis of keystroke characteristics.

3.3 Metrics

Keystroke latency was the �rst metric identi�ed in the study of keystroke analysis.

It was the initial basic metric, calculated according to the time di�erence between
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the key press events of any digraph (that is, two character combination). Some

research e�orts have introduced the concept of a `trigraph', which is a term used to

describe a triplet of typed characters (Bergadano et al., 2002; Hu et al., 2008).

The general term for n number of successively typed characters is an n-graph.

Whatever the size of n, the keystroke latency still remains a single metric which

measures the time di�erence between the depression of the �rst character in the

sequence and the depression of the nth character in the sequence.

Since the work of Brown and Rogers (1993), the most common metrics used in

keystroke dynamics research are the `keystroke duration' and `digraph latency'; these

metrics are calculable from any digraph. Although other metrics are possible (as

illustrated by the blue lines in Figure 3.1), keystroke duration and digraph latency

are the most widely used and accepted (refer section 3.4), and thus were used in the

current experiment.

With any digraph, there are four events corresponding to the depression and

release of each character key in the digraph. The four events denote six possible

individual measurements (Peacock, 2000). As illustrated in Figure 3.1:

1. T1 represents the time the 1st key is depressed.

2. T2 represents the time the 1st key is released.

3. T3 represents the time the 2nd key is depressed.

4. T4 represents the time the 2nd key is released.

The red lines in Figure 3.1 highlight the keystroke duration and digraph latency.

Thus, keystroke duration is the total time a key is depressed. Digraph latency is the

time distance between two successive keystrokes (i.e. the time between the release

of a key and the depression of the next key).

By de�nition then (as demonstrated by the red lines in Figure 3.1), the two

metrics are the time di�erences between states. That is, T1 =⇒ T2 represents the

keystroke duration and is calculated by subtracting T1 from T2. Similarly, T2 =⇒

T3 represents the digraph latency, and is calculated by subtracting T2 from T3.
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Figure 3.1: States of a Two-Key Combination

As an example, Figure 3.2 illustrates the keystroke durations and digraph laten-

cies for the two character sequence �th�, followed by the depression of the Enter key.

The depression of the Enter key is necessary for the calculation of the last metric of

the last character (in this case, the digraph latency for the letter `h').

Figure 3.2: Keystroke Durations and Digraph Latencies for the digraph �th�

Table 3.1 demonstrates the calculation of metrics for the illustration in Figure 3.2.

Note that it is possible for the digraph latency metric to be of negative magnitude.

This may occur if the second key of the digraph is depressed before the �rst key is

released. In the above example, T3 (the depression of the second key) could occur
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before T2 (the release of the �rst key) and thus the calculation of the metric could

result in a negative magnitude. Similarly, T5 could occur before T4.

METRIC 1ST KEY 2ND KEY

Keystroke Duration T2 - T1 T4 - T3

Digraph Latency T3 - T2 T5 - T4

Table 3.1: Metric Calculation for a Two-Key Combination

However for the keystroke duration, a negative magnitude is not possible because

the measurement of the metric is not initiated until a depressed key is released. So

in the above example, T2 must occur after T1 and thus the calculation of the metric

can only result in a positive magnitude. Similarly, T4 must occur after T3.

The next section presents a review of literature relating to keystroke dynamics

research.

3.4 Keystroke Dynamics Related Research

Card et al. (1980) proposed the keystroke-level model to evaluate the cognitive pro-

cesses in the completion of a typing task. The model was originally intended as a

design evaluation method for highly interactive programs (Umphress and Williams,

1985). Inadvertently, it formed the basis for research into the keystroke character-

istics that determine an individual's typing pattern.

The model for measuring a typing task is represented as the sum of an acquisition

time and the execution time. The acquisition time is the time required to assess

the overall task; this includes building a mental representation of the functions to

be performed, and choosing appropriate methods to perform them (Card et al.,

1980). The acquisition time involves strategic planning, and varies depending on

the extent of the task. It is not easily quanti�able and cannot reliably characterise

an individual (Umphress and Williams, 1985).

The execution time is the time required to call on the system resources to accom-

plish the tasks (Card et al., 1980). Execution time describes physiological actions

that are quanti�able. It is de�ned as the sum of the time required for mental prepa-
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ration (i.e. tactical planning, as opposed to strategic planning in the acquisition

time) and the time to key in information (keystroke time) (Umphress and Williams,

1985). Here, the sum of the keystroke time and mental time is not considered a

macroscopic operation, but the sum of sub-tasks of keystroke and mental times.

Each sub-task is referred to as a cognitive unit, and the keystroke times within each

cognitive unit characterise an individual's typing pattern.

A number of research e�orts further investigated the concepts proposed by Card

et al., (1980), speci�cally concentrating on analysis of keystroke times. These studies

have demonstrated the e�ectiveness of keystroke dynamics as a method of identity

veri�cation. However, though the �rst papers were published as long ago as 1980,

by Gaines et al., it has not been a widely researched �eld.

With the emphasis of improving the initial authentication procedure (logging

on), the majority of the research e�orts have concentrated on static veri�cation

(refer Table 3.2 in section 3.4.1), with only a small number investigating dynamic

veri�cation (refer Table 3.3 in section 3.4.2). Thus this review �rst considers ex-

periments where static veri�cation has been investigated, including recent research

utilising ANNs. For completeness, a very brief review of some experimental work

where dynamic veri�cation has been investigated, will follow2.

3.4.1 Static Veri�cation

The research �ndings and methodological issues relating to keystroke dynamics ex-

periments involving static veri�cation�as conducted by the authors of the papers

reviewed�are summarised in Table 3.23.

As well a being useful as a quick reference for the following discussion, the

information in Table 3.2 will be used in Chapter 7 to compare results achieved

in the current study with those of previous research.

2It should be noted that the review is by no means a comprehensive coverage of all work done
in this �eld. Rather the research e�orts reviewed here were chosen to provide an overview of the
current status in this �eld, and to provide �gures with which to compare the results from the
current experiment.

3Although some authors expressed the performance variables (FAR and FRR) as a percentage,
columns 9 and 10 denote the actual rates (i.e. the percentage divided by 100). During the
discussion, the performance variables are presented as both the actual rates and their corresponding
percentages (in parenthesis).
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The �rst reviewed investigation into static veri�cation was by Gaines et al.

(1980). They had 6 participants enter three paragraphs of text in two collection

sessions (consisting of 818 words of prose in total). The space character was in-

cluded as a valid character in a digraph. Keystroke events were captured at a

resolution of 1 millisecond, and keystroke latency was the metric used.

The aim was to determine if a `typing signature'�that could be used for accu-

rate veri�cation�was apparent; and if so, which digraphs (character combinations)

indicated more signi�cance than others.

Statistical analysis was performed using T-tests on 87 out of a possible 729

digraphs. Only those digraphs that occurred 10 times or more for all participants

were used. Also, digraphs that included capital letters, backspace, and a keystroke

latency greater than 500 milliseconds were removed from the analysis4.

The results were presented as a false acceptance rate (FAR) of 0.0 and a false

rejection rate (FRR) of 0.004 (4.0%). The conclusion was that a `typing signature'

was apparent for each participant. Furthermore, the digraphs `in', `io', `on', `no',

`ul', `il', `ly' were more distinguishable than other digraphs. Note that these digraphs

are all typed by the right hand (in the standard typing method). The researchers

believed that the corresponding combinations on the left hand would also provide

signi�cant distinctiveness, though there was not enough data to demonstrate this.

Though the results were impressive, it was a preliminary study with only 6 par-

ticipants. Also, each participant contributed only 3 samples, and only 87 digraphs

(from the typed text) were tested. Therefore, the researchers were cautious about

the same degree of accuracy being achievable in a larger population. They also

believed that further research into the signi�cant digraphs was warranted. Even

with these validity concerns, the investigation provided a valuable framework for

successive studies.

Umphress and Williams (1985), recruited 17 participants who provided one sam-

ple each over 2 collection sessions. The �rst session required participants to enter

1,400 characters of prose which was used to determine the reference template, while

4Keystroke latencies over 500 milliseconds in duration were discarded because it was considered
an indication that the typist may have become distracted or lost concentration.
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the second session required entry of 300 characters of prose to be used as test data.

No reason was given for the chosen text length. Keystroke events were captured at

a resolution of 10 milliseconds, and keystroke latency was the metric used.

Because data collection involved typing prose, the following �ltering was applied

to the collected data:

• Only digraphs within the �rst six characters of words were considered. This

was based on work by Cooper (1983), who determined that typists typically

pause between words as well as within words that are longer than six charac-

ters.

• Digraphs within and word that contained a typing error were eliminated.

• Keystroke latencies over 750 milliseconds in duration were discarded because

they were not considered good candidates for inclusion in the typists reference

template. Reasons for durations over this limit could be that the typist became

distracted, lost concentration, or was unfamiliar with the keyboard.

• Digraphs which included capital letters had the latencies of the appropriate

key and the `Shift' key summed and halved.

• The space character was not included as a valid character in a digraph.

For each participant, two measures were generated from the �ltered data for

their reference template:

1. The mean keystroke latency time for each digraph.

2. The overall mean and standard deviation of the keystroke latency times.

A matrix of 26 rows and 26 columns was used to store the metrics for all digraphs.

The rows represented the �rst character of a digraph and the columns represented

the second character. The mean keystroke latency for each digraph was calculated

and recorded at the corresponding intersection of row and column.

The analysis involved comparison of the mean keystroke latencies from the ref-

erence template matrix with the corresponding test data matrix. The overall mean



3.4. KEYSTROKE DYNAMICS RELATED RESEARCH 129

and variance were used as a measure of tolerance between two corresponding values.

If a test keystroke latency was within 0.5 standard deviations of the corresponding

reference template mean value, the test keystroke latency was considered valid. The

experiment achieved FAR and FRR results of 0.0588 (5.88%) and 0.1176 (11.76%)

respectively.

The issues of concern with this research are: the use of a course metric (the

keystroke latency; a timing resolution of 10 milliseconds; the small number of par-

ticipants (17); the small number of samples (2 per participant); and the use of the

mean and variance as a course classi�er.

Leggett and Williams (1988) replicated the above experiment with some mod-

i�cations. They recruited 36 participants, who provided one sample each over 2

collection sessions. In both sessions participants were required to enter 537 char-

acters of prose; the �rst set was used in determining the reference template, while

the second set was used as test data. Again, no reason was given for the chosen

text length. Keystroke events were captured at a resolution of 10 milliseconds, and

keystroke latency was the metric used.

The authors evaluated a number of di�erent digraph latency combinations in

an attempt to determine which would prove the most accurate, but found that the

method previously used by Umphress and Williams (1985) returned the best results.

They used the same analysis method as Umphress and Williams (1985), except that

the overall mean latency time was discarded because the standard deviation alone

was more determinant.

The results achieved were 0.05 (5.0%) for the FAR and 0.055 (5.5%) for the

FRR. This shows a slight improvement in the FAR and a marked improvement in

the FRR. The improved results could be attributed to having more participants and

a larger test data set than the earlier experiment by Umphress and Williams (1985).

However, the same concerns identi�ed in the Umphress and Williams (1985) study,

were also applicable to the Leggett and Williams (1988) study.

Joyce and Gupta (1990) conducted an experiment with 33 participants. Each

provided 13 samples, in an initial enrollment session, from which 8 were used to
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derive the reference template and 5 were used to test for false rejection. Six par-

ticipants were then randomly chosen as targets for the remaining 27 participants to

attempt to impersonate. Each of the 27 `impostors' provided 5 samples per target

to test for false acceptance. Therefore, the number of samples obtained from each of

the 27 non-target participants was 30 (6x5). Each sample consisted of four compo-

nents (username, password, �rst name, last name). It was estimated that samples

comprised an approximate average of 32 characters. The metric used to characterise

the digraph times was the keystroke latency.

A reference template for each target participant was determined as follows: for

each keystroke latency in the participant's 8 samples, the mean and standard de-

viation were calculated. Latencies outside 3 standard deviations of the mean were

considered outliers and discarded. The means were re-calculated from the remaining

latencies. A resultant vector of keystroke latency means was referred to as the mean

reference template.

Testing against the reference templates was achieved as follows: the magnitude of

di�erence between the mean reference template and a `test signature' was computed.

This involved comparing each mean latency in the reference template vector with the

corresponding value in the `test signature' vector, and returning a single di�erence

value between the two. A threshold value was used to decide if the `test signature'

was valid. This threshold was determined as the mean plus 1.5 standard deviations

(the standard deviation obtained when determining the reference template). If a

`test signature' di�erence value was within the threshold variability of the mean

reference template, it was accepted as valid.

The results achieved were a FAR of 0.0025 (0.25%), and a FRR of 0.1636

(16.36%). The FAR seems quite acceptable, thought the FRR is very high. How-

ever, there are a few areas of concern. With only 8 samples used in determining

the reference templates, the means and standard deviations may not contain enough

meaningful information to be distinguishable in a larger population.

Also, using only 5 samples to test for false rejection means that the FRR has a

very course granularity. The FAR was tested by comparing 810 samples against each
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of the 6 target reference templates, but this is a very low number of participants to

target. It is questionable that these results would be representative should a larger

population be tested. Therefore, it is di�cult to have con�dence in the low FAR of

0.0025 (0.25%).

Brown and Rogers (1993) conducted the earliest known investigation�utilising

ANNs for pattern recognition�for identity veri�cation of keystroke dynamics data.

They also introduced the concept of using two metrics to characterise the digraph

times (rather than just the keystroke latency). The two metrics were the keystroke

duration and digraph latency (refer section 3.3). Two metrics give a �ner granularity

and provide a more determinable pattern. Keystroke events were measured at a 1

millisecond resolution.

Forty six participants were recruited; each provided an average of 40 samples

of their own username (approximately 8 characters) and one sample of each of the

other usernames (45). For each participant, 30 samples were used for positive case

training of the ANN; there were 45 negative case samples available per participant5.

As well as the 30 samples per participant used for training the ANN, there were 10

samples available for testing for false rejection. Also, there were 30 samples collected

from 15 di�erent volunteers to test for false acceptance.

The experiment �rst used the Kohonen network (self-organizing map or SOM) to

eliminate outliers from participants typing samples. A Kohonen network is a neural

network that organses dimensionally complex data into clusters. This capability

clusters a set of inputs according to intrinsic relationships. Any authentic input not

mapping to the appropriate cluster was considered an outlier and discarded.

For testing veri�cation, the single layer perceptron (SLP), the multi-layer percep-

tron (MLP), and a distance measure were used for classi�cation. The experiment

achieved a FAR of 0.0 (for all classi�ers), with a FRR of 0.149 (14.9%) for the

distance measure, 0.174 (17.4%) for the SLP, and 0.115 (11.5%) for the MLP.

The authors reported that the FAR (for all three classi�ers) was forced to achieve

a rate of 0.0 (by adjusting a decision threshold). The reason for forcing the FAR to

5Positive case samples are those that the ANN is being trained to recognise. Negative case
samples are those that the ANN should not recognise, thus aiding the ANN in distinguishing
between correct and incorrect patterns during training.
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0.0 was because authentication in mission critical situations typically require a FAR

of 0.0 (or at least very close to 0.0). In an experimental setting however, this could

be seen as in�uencing the outcome, and thus was avoided in the current study.

The FRR results show that the MLP (with a FRR of 0.115 (11.5%)) performed

much better than the SLP (with a FRR of 0.174 (17.4%)); even the distance measure

(with a FRR of 0.149 (14.9%)) performed better than the SLP. The probable cause

for the SLP having a higher FRR than the MLP was probably due to the fact that

error back propagation is not employed in SLP neural networks. Whilst weights

are adjusted when training a SLP, errors are not used to update weight values via

back-propagation through the network as is done in the MLP.

The unimpressive FRR values could also have been impacted by course granu-

larity, with only 10 samples per participant available for testing false rejection. The

FAR of 0.0 (although `forced') demonstrated that using ANNs for recognising typ-

ing patterns returned better results than the deterministic statistical methods used

by previous researchers. It also demonstrated the better performance attainable by

using two metrics instead of one.

Obaidat and Sadoun (1997) conducted an experiment that compared the perfor-

mance of various statistical pattern recognition techniques with ANN architectures

for pattern recognition. There were 15 participants who provided 225 samples per

day for eight weeks. Assuming this means working days, this gives a total of 9,000

samples. These samples were partitioned into 4,500 training samples and 4,500 test-

ing samples. In addition, to test for false acceptance, each participant typed 15

samples of the other participants' usernames (that is, 14x15 = 210).

Although a previous experiment determined that strings of less than 10 char-

acters in length steeply reduced accuracy (Bleha and Obaidat, 1991), usernames

had an average length of just 7 characters. The metrics used were the keystroke

duration and digraph latency. Keystroke events were measured at a resolution of 1

millisecond.

The statistical pattern recognition techniques tested were the K-Means Algo-

rithm (KMA), the Cosine Measure Algorithm (CMA), the Minimal Distance Algo-
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rithm (MDA), Bayes' Decision Rule (BDR), and Potential Functions (PF). The ANN

architectures tested were the Multi-Layer Perceptron with Back-propagation (MLP-

BP), the Counter-propagation Neural Network (CPNN), the Fuzzy ARTMAP (FA),

the Radial Based Function Network (RBFN), the Learning Vector Quantisation

Network (LVQ), the Reinforcement Neural Network (RNN), the Sum-Of-Product

Network (SOP), and the Hybrid-Sum-Of-Product Network (HSOP).

The best statistical pattern recognition technique was the PF with a FAR of

0.007 (0.7%) and a FRR of 0.019 (1.9%). The BDR also achieved results very close

to these results. However, the study found that ANNs performed much better overall

than the statistical pattern recognition techniques. Of these classi�ers, the MLP-BP

(using the sigmoid transfer function), the FA, the RBFN, and the LVQ performed

best with FAR and FRR results of (0.0, 0.001), (0.0, 0.0), (0.0, 0.0), and (0.0, 0.0)

respectively.

These results were excellent, although there were some concerns. Firstly, there

were only 15 participants, and these may not be representative enough of a larger

population. Secondly, by the authors own admission the text length should have

been longer than 7 characters.

When training ANNs it is not typical to use as many training samples as the

authors used (4,500 per participant). This tends to over train the networks, which

can distort the true classi�cation accuracy (particularly if other validity issues are

present). A `rule of thumb' for positive case training data sets is to use approxi-

mately 30% of the total number of samples acquired (Kasabov, 1996). However with

9,000 samples available, this would eventuate in 3,000 samples, which still seems an

inordinately high number of samples.

This was an important study, as it was the �rst to compare statistical pattern

recognition techniques with ANN architectures for pattern recognition. It demon-

strated the e�ectiveness of ANNs for recognising typing patterns, as opposed to

using deterministic statistical methods and other pattern recognition techniques.

Also, the accuracy achieved lends credibility to the use of keystroke dynamics as an

accurate person identi�er. These results had a key in�uence on the design of the

author's study.
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Another study, by Cho et al. (2000), also used ANNs for static veri�cation. The

data collection was conducted, unsupervised, over the World Wide Web (WWW).

They recruited 21 participants, each providing between 150 and 400 samples of

their password (an average of 275 samples). Passwords were typically less than 8

characters in length. The last 75 samples were set aside for testing (for positive

recognition), the remainder were used for training the ANN after outlier samples

were discarded. A di�erent group of 15 participants were recruited to provide 75

samples each of the 21 known passwords.

The author's approach was to use the Multi-Layer Perceptron as an auto-associator

(MLP-AA) for identity veri�cation. The MLP-AA is a neural network where the

input vector is also used as the target. During the training process, the MLP learns

by encoding properties from the data (i.e. typing pattern) in the input vector into

the network (Cho et al., 2000). During the testing process, when presented with

an unseen pattern�supplied by the same identity who provided the input vector

for training the network�the network outputs a vector very close to the input vec-

tor. When presented with an unseen pattern�supplied by a di�erent identity�the

network outputs a vector very di�erent to the input vector.

The experiment achieved FAR results of 0.0, with FRR results varying from 0.0

to 0.01 (1.0%). Two thirds of the participants tested had FAR results of 0.0 and

FRR results of 0.0. Although this seemed impressive, the number of participants

was small and the data collection was unsupervised. There was nothing to prevent

participants using the copy and paste facility when entering their samples (thus

potentially corrupting the experiment).

Also, there were only 1,125 (15x75) samples available for testing false acceptance,

and 75 for testing false rejection (for each of the 21 participants). These concerns

raise internal validity issues, and caste some doubt on the ability to replicate the

results.

An experiment conducted by Peacock (2000) introduced the concept of using

the arithmetic sum of all 6 possible measures between a two key combination (refer

section 3.3), resulting in only one value to characterise each digraph. Keystroke

events were measured at a resolution of 1 millisecond.
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There were 11 participants who provided 20 samples each. A sample comprised

a username, password, and a 9 character string. For each participant, 15 samples

were used as training data for the learning algorithm, and 5 as validation data.

The analysis was performed by the k-Nearest Neighbour (KNN) method. KNN

is a popular technique for forming classi�cation decisions. The technique involves

computing the distance of an input vector Ii from a set of stored training examples

Wij. The classi�cation decision is performed on the basis of majority voting of

classi�cation of the K nearest pattern in N-dimensional space, where N is the number

of features in the pattern. This method forms the basis for memory-based learning,

and is referred to as a `lazy learning technique', where all classi�cation is done during

the validation phase (when input data is compared, distance wise, with the stored

training data).

The results achieved were a FAR of 0.042 (4.2%) and a FRR of 0.08 (8.0%),

which were not very encouraging. The low number of participants and the lack of

supervision during the data collection raises internal validity concerns. The results

also indicate that summing the 6 possible metrics may be nullifying some of the

identi�able characteristics normally obtained by the individual metrics.

Comparing the results of this experiment with previous studies that used ANNs

for recognising typing patterns (Brown and Rogers, 1993; Obaidat and Sadoun,

1997), it is again clear that ANNs out perform other pattern recognition methods.

Like the previous study, Bergadano et al. (2002), used one metric to characterise

typing samples. However, the authors used trigraphs instead of digraphs. A trigraph

is a term used to describe a triplet of typed characters. The duration of the trigraph

is measured from the press of the 1st key to the press of the 3rd key. Note that

there is only one metric per trigraph (this is essentially the keystroke latency for a

three key combination).

There were 44 participants recruited to represent legitimate users of a system.

Each provided 5 samples of the same prose, resulting in a total of 220 samples.

There were also 110 participants recruited to represent impostors, who attempted to

impersonate a legitimate user. Each provided 1 sample of the same prose, resulting
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in a total of 110 samples. This gave a total of 330 samples. Each sample comprised

683 characters of prose.

Data collection was conducted over 28.8-Kbaud phone line, with the data capture

program residing on a Sun Workstation (which was a server machine for a local area

network�LAN). An obvious concern here is that the capture of keystroke event times

would be subject to interruptions�due to high tra�c loads�and therefore the data

captured could not be guaranteed to truly re�ect the correct time intervals. Another

point of concern is that keystroke event times were measured at a 10 millisecond

resolution. A previously mentioned, this is a rather course resolution and is an odd

choice for an experiment conducted in 2002.

For each legitimate user, 4 samples were used to form a pro�le; 1 sample was

used to test for false rejection6, and 325 samples to test for false acceptance7. The

325 was made up of the impostor samples and the 5 samples from each of the other

legitimate users (i.e. 110 + 215).

The authors claimed to have 220 samples available to test for false rejection (for

each legitimate user), and 71,500 samples to test for false acceptance. In order to

arrive at this quantity, the preceding process was repeated for each individual sample

(for each legitimate user). This meant that the evaluation was performed on the

same sample sets �ve times over, with just a di�erent ordering of the samples each

time. The authors accepted that this raised some experimental validity concerns.

The method of analysis involved the calculation of the distance between two

samples, based on the duration of the trigraphs that comprise the text. Firstly, all

trigraphs were ordered according to their durations, such that trigraphs and their

associated duration were stored in ascending order of time in a two column matrix.

This was done for any two samples, so let V and V ′ be the matrices containing the

associated trigraphs and durations of the two samples, with dimension Nx2 (where

N is the number of trigraphs). The distance between the position of a trigraph in

6Though the authors used the term false alarm rate, their explanation described what most
researchers refer as the false rejection rate�FRR.

7Though the authors used the term impostor pass rate, their explanation described what most
researchers refer as the false acceptance rate�FAR.
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V and the position of the same trigraph in V ′ determined the distance d for that

trigraph8.

A normalised total distance for all trigraphs between both samples�based on

the sum of the d distances�was calculated according to Equation 3.1:

nd(S1, S2) =
N∑
i=1

di/(N
2/2) (3.1)

where nd(S1, S2) is the normalised distance between two samples S1 and S2,

and N is the number of trigraphs9. The result of this calculation was termed the

`degree of disorder'.

Prior to testing, the following measures were required:

• The mean of the normalised distances of all samples for a legitimate user,

denoted m(A) for a user A.

• The mean distance between a query sample and the normalised distances of

all other samples for the claimed legitimate user, according to Equation 3.2:

md(S,Q) =
N∑
i=1

nd(Si, Q)/N (3.2)

where md(S,Q) is the mean distance of all normalised distances (between a

query sample Q and all other samples), and N is the number of trigraphs.

When verifying a query sample, the following criteria needed to be met for that

sample to be considered to belong to a legitimate user:

1. md(A,Q) was the smallest mean distance.

2. md(A,Q) was closer to m(A) than any other md(B,Q) computed. This can

be calculated as shown by Equation 3.3:

md(A,Q) < m(A) + |k(md(B,Q)−m(A))| (3.3)

8So theoretically, d could be determined as a distance value in the scope of 0, 1, . . . , N − 1.
9If N was odd, (N2 − 1)/2 was used as the divisor.
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where B is another legitimate user of the system such that md(B,Q) is the

second closest mean to m(A) after md(A,Q), and k is a constant10.

Two other constants a and b were introduced as �lter mechanisms, to provide

and acceptable balance between the FAR and FRR. The best results achieved were

a FAR of 0.0001 (0.001%) and a FRR of 0.04 (4.0%).

Though these results appear better than those achieved by other studies using

statistical methods (and even some that used ANNs), there are concerns about the

experiment. In addition to the concerns already stated above, the use of only 1

sample per legitimate user (even though it was used 5 times over) to test for false

rejection, results in course granularity for that performance variable.

Given these issues, caution could be applied when attributing con�dence to the

experimental �ndings. On the positive side, the analysis method was quite inno-

vative and could provide valuable information; perhaps if incorporated with two

metrics calculated from digraphs (i.e. keystroke duration and digraph latency) the

measurements could be useful.

An empirical study conducted by Monrose et al. (2002), proposed a method

of `password hardening'. Password hardening is a concept where knowledge of the

password is only half of the requirement for authentication. The other criteria may

be based on keystroke dynamics. Thus, authentication is based on knowledge of the

password and how the password is typed by the legitimate user.

Statistics attained from the legitimate user's typing pattern are used to encrypt

the password; only the ability to type the password in the same manner as the

legitimate user will be successful in decrypting the encrypted password. Whilst this

approach is very di�erent to that of the current investigation, valuable information

can be gained from this study.

The authors demonstrated the entropy or randomness of keystroke features

among 20 participants typing samples. They also determined the average number

of distinguishable features obtained from a password of 8 characters. All partici-

10A factor k = 0.5 simply requires that md(A,Q) is closer to m(A) than any other md(B,Q),
whereas k = 0.66 enforces less stringency and k = 0.33 requires stronger evidence of Q belonging
to A.
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pants entered the same password at least �ve times each. For di�erent values of

a constant k, the entropy of the metrics and the corresponding average number of

distinguishable features were identi�ed.

For example, for k = 0.1, the entropy achieved was 10.5, which is the maximum

attainable for 20 users. The average number of distinguishable features for that

constant value was 14 out of a possible 15.

While these facts were based on a study with only 20 participants, and the

application to which they were applied was di�erent to the current study, it did re-

a�rm that keystroke patterns are quanti�able and distinguishable between di�erent

people.

Yu and Cho (2004), identi�ed three factors which they believe may a�ect the

capability of ANNs to recognise typing patterns in a keystroke dynamics authenti-

cation system (and thus possibly produce erroneous results):

1. In a real-world situation only legitimate users' data are available in advance

(for training purposes), as it is impossible to gather data from all prospective

impostors. For ANNs to be trained e�ectively, they require both positive and

negative case input data. In order to overcome this perceived liability, the

authors adopted the use of support vector machines (SVMs)11, which require

only positive case input data for training purposes.

2. Obtaining enough training data is problematic. In research, and in a real-

world situation, it is unlikely that users would appreciate entering hundreds

of samples of the required text. The authors adopted the ensemble method to

generate extra data from existing data.

3. Raw data contains much noise and variability (Cho et al., 2000). Pre-processing

attempts to eliminate outliers by selecting relevant subsets of features (ignor-

ing redundant or erroneous features). In many cases this is done manually.

However, an authentication system requires automation of such a process.

11SVMs use supervised machine learning techniques based on the concept of decision planes
that de�ne decision boundaries. A decision plane separates a set of objects having di�erent class
memberships. For problems that can not be linearly separated in the input space, SVMs attempt
to �nd a solution by making a non-linear transformation of the original input space into a high
dimensional feature space, where an optimal separating hyperplane can be found (Rychetsky, 2001).
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The authors made use of genetic algorithms (GA) to select relevant subsets of

features12.

The authors concern stated in point 1 above, is a matter of perspective. As

stated by the authors, it is impossible in any real-world situation to collect samples

from all prospective impostors. However, depending on the situation in which the

authentication system is to be employed, this may or may not be a real problem. For

a home computer situation (where there are possibly only 3 or 4 legitimate users),

the point is quite relevant; it would be very di�cult to obtain enough input data

to e�ectively represent an entire population of impostors. In contrast, for a system

with multiple users (that is, small to large companies or corporations), this is less

likely to be an issue.

In relation to point 2 above, it is unlikely�in research or in a real-world situation�

that collecting enough data for training an ANN would be a real problem (for a

multiple user system). In either situation the number of samples required from

participants should not be unreasonably high. Introducing methods to generate

synthetic data sets seems unnecessary.

In relation to point 3 above, there are numerous methods�statistical and ma-

chine learning�that could be employed for feature selection (to reduce data noise).

Statistical packages (such as SPSS and R) are available that accept internal com-

mands for achieving the same outcomes that most users achieve via a graphical user

interface. These packages could be integrated into an automated authentication

system, as easily as any machine learning technique.

For their experiment, the authors recruited 21 legitimate users who provided

between 150 and 400 samples (on average 275) of their password (for training pur-

poses), and then provided 75 samples for testing purposes.

Passwords were between 6 and 10 characters in length. So on average, legitimate

users could be said to have provided 350 (275+75) samples. Fifteen impostors prac-

12GAs are a search technique used to �nd (exact or approximate) solutions to search problems
by mimicking the process of natural evolution. They are a class of search meta-heuristics, that
use techniques such as inheritance, mutation, selection, and re-combination (crossover), which are
known in the �eld of evolutionary biology (Reeves, 2003).



3.4. KEYSTROKE DYNAMICS RELATED RESEARCH 141

ticed typing the passwords, and then provided 5 attack attempts for each password

(that is, 75 impostor samples per password).

Analysis was performed by a genetic algorithm and support vector machine (GA-

SVM) combination. Using a wrapper approach, the GA-SVM iterated until the most

relevant subset of features�determined by the genetic algorithm�achieved the best

classi�cation outcome (utilising the support vector machine).

The experiment returned best results of FRR of 0.0369 (3.69%) when the FAR

was forced to 0.0. These result are comparable with other research e�orts already

discussed, that employed machine learning techniques. However, the steps the au-

thors took to overcome what they saw as de�ciencies with ANNs, entailed additional

processing steps to achieve essentially similar accuracy. Any unnecessary processing

opens up the possibility for introducing error.

In the preceding experiments it is clear that participants were required to type

text of vastly di�erent lengths for each sample they provided. Depending on the

focus of the researchers, some used prose of many words, some used a phrase of only

a few words, and some used a username or a password or both. This means that

the data sets for analysis also varied in length.

Little research had been done to investigate the optimal length text that would

return the best veri�cation accuracy under the same conditions, although Bleha and

Obaidat (1991) stated that character strings with length less than 10 were prone

to great variability and loss of accuracy. In an attempt to bring consistency to

experimentation in this �eld, Abernethy et al. (2004), conducted an experiment

to determine the optimal text length (for best veri�cation accuracy), when using

ANNs for classi�cation. This was a preliminary study to the one reported in this

dissertation, carried out by the author and his collaborators.

The experiment had 50 participants provide 50 samples each of a 32 character

string (in 5 collection sessions), though only 40 samples were used in the experiment;

the �rst ten allowing participants to become familiar with the phrase.

The string was a derivative of the familiar typist training sentence �the quick

brown fox jumps over the lazy dog�. For the convenience of participants, this was
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shortened to �brown foxes jump over lazy dogs�. Note that these are all lowercase

characters. Timing resolution was 1 millisecond, and the metrics used were the

keystroke duration and digraph latency.

Twenty �ve participants were randomly selected for the training group, and

the remaining 25 were assigned to the non-training group. Of the 40 samples per

training group member, 30 were randomly chosen for the positive training case, and

2 samples from each of the other training group members were randomly chosen as

the negative training case. Thus, each training group member had an input training

�le of 78 samples. These training �les were used to derive the input training sets

for each character length (from 2 to 31).

Classi�cation was performed by the Multi-Layer Perceptron back-propagation

neural network. An ANN was used to classify each character length, for each training

group member. The number of middle layer neurons per ANN was varied, so that

the con�guration returning the best accuracy could be determined.

When testing for false rejection, the mean of the ANN outputs�for the positive

acceptance tests�was determined. Analysis was based on this mean less a con�-

dence level of 0.05. For the tests for both performance variables (FAR and FRR), if

a score was above the mean minus the con�dence level, it was considered a match.

Otherwise, it was considered a non-match.

The results indicated that the optimum length was �fteen characters. At that

length a FAR of 0.0119 (1.19%) was achieved, with a FRR of 0.108 (10.8%). Though

the results were not as accurate as some previous experiments involving ANNs�for

example, (Brown and Rogers, 1993; Obaidat and Sadoun, 1997; Cho et al., 2000)�

they did indicate that a string of approximately 15 characters could be recommended

to attain an acceptable accuracy.

A limitation with this study was that only 10 samples, for each training group

member, were available to test false rejection (after 30 samples were used for train-

ing). This resulted in a course granularity in the FRR scores13.

Also the mean (calculated from the outcomes of the 10 false rejection tests) which

was used in determining classi�cation, may have impacted on the FAR; that is, the

131 rejection resulting in an FRR increase of 0.1 (10%).
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FAR may not have been truly representative of the classi�cation accuracy achieved

by the ANNs.

Jiang et al., (2007) proposed the use of Gaussian Modeling and Hidden Markov

Models (HMMs) to analyse users typing patterns14. Gaussian modeling and the

maximum likelihood estimation were used to determine the sample mean and vari-

ance for the distribution of keystroke times. These values were used as parameters

by the HMM. Using the forward algorithm, the HMM predicted the probability that

a query typing sequence matched that of the reference sequence.

For their experiment, the authors recruited 58 participants to type 20 samples

each of a username and password. All 58 made 15 attempts to authenticate them-

selves (thus 870 legitimate user tests were performed). Another 257 volunteers

provided 28 attempts each to authenticate each of the 58 legitimate participants

(that is, a total of 3,528 impostor tests were performed).

The authors presented their results graphically (refer Figure 2 of their publica-

tion) to demonstrate the equal error rate (EER), false acceptance rate (FAR), and

false rejection rate (FRR). The FAR and FRR could be independently reduced by

adjusting the threshold (though this would impact on the other performance vari-

able). The graph illustrated results at threshold values between 0.2 and 3.6, and

the following approximate information can be extracted.

The best FAR of 0.0 was �rst achieved at threshold 3.0, however the FRR at that

threshold was approximately 0.2 (20.0%). The best FRR of 0.0 was �rst achieved at

threshold 1.0, however the FAR at that threshold was approximately 0.22 (22.0%).

At the threshold 1.5, an equal error rate (EER) of 0.0254 (2.54%) was achieved; this

means that both the FAR and FRR achieved this rate. Consequently, these �gures

were recorded in Table 3.2. A more acceptable FAR of approximately 0.01 (1.0%)

and FRR of approximately 0.05 (5.0%) was attained at the threshold value of 1.8.

Revett et al., (2007) experimented with, what they called, primary and secondary

metrics obtained from user input of a username and password (from 6 to 15 char-

acters). Primary metrics are those directly obtainable, and included the time taken

14Hidden Markov Models are statistical models that can be used to characterise sequential data
such as keystroke times.
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to enter the username, the time taken to enter the password, and the total time

for the entry of both username and password. The secondary metrics are derived

values that are calculable from raw keystroke event times, and included digraph and

trigraph latencies, typing speed, and edit distance.

For their experiment, they recruited 50 participants (20 legitimate users and

30 impostors). There were 10 samples maintained for each of the legitimate users;

samples were collected 3 times daily for 14 days, and the metrics from the latest

10 samples were used to update the metrics in the 10 maintained samples. The 30

impostors attempted to login to the legitimate user accounts, with each impostor

attempting 4 logins for every legitimate user (i.e. 80 login attempts by 30 impostors

provided 2,400 login attempts). However, only 2,000 attempts (by impostors) were

randomly selected for use in the evaluation. Legitimate users attempted to login to

their own accounts 100 times. Therefore, there were 2,000 attempts by legitimate

users used for evaluation (20 x 100).

Classi�cation was performed using the Probabilistic Neural Network (PNN) and

Multi-Layer Neural Network with back propagation (MLNN-BP). The PNN is fun-

damentally a neural network implementation of a Bayes-Parzen classi�er (Revett

et al., 2007); it determines class membership of multivariate sample data based on

a set of measurements (in this case, the primary and secondary metrics).

Experimental results of concern for this review are those that include the use

of all metrics�primary and secondary�using both the PNN and the MLNN-BP

for classi�cation15. The authors reported results as an average of the FAR/FRR

performance variables. No attempt was made to di�erentiate between the two, even

though most researchers typically do so in order to compare these variables with

other research results. Also, considering the variables separately facilitates adjusting

the error rates�via a decision threshold�usually to reduce the FAR error.

Results were an average FAR/FRR of 0.057 (5.7%) for the MLNN-BP and an

average FAR/FRR of 0.039 (3.9%) for the PNN. In order to register the FAR and

FRR results separately in Table 3.2, the rate reported for the PNN (being the better

result) has been halved, because it was the average of the two performance variables.

15Results were also reported for the individual metrics, but were not considered for this review.
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Thus for comparison with other research, it is estimated that the FAR and the FRR

achieved 0.0195 (1.95%) respectively16.

The metrics used in the experiment seems to be the main signi�cant di�erence

between this research and others that have used ANNs, as most other aspects of the

experiment were comparable with accepted practices. Given the approximated rates

above, it seems that the use of primary and secondary metrics did not demonstrate

any improvement over the keystroke duration and digraph latency.

A study performed by Hu et al., (2008) utilised the normalised degree of disorder

of tri-graphs, but extended the concept to a generalised degree of disorder for n-

graphs. This was an extension to the original method proposed by Bergadano et al.,

(2002). The authors adopted the KNN approach for classi�cation, instead of the

statistical approach taken by Bergadano et al., (2002).

To improve performance, the calculation of a measure A was determined. A

was a similarity measure of the number of n-graphs that have similar durations

between two samples. Similarity of durations between n-graphs from two samples

was measured according to Equation 3.4:

1 <
max(d1, d2)

min(d1, d2)
≤ 1.25 (3.4)

where d1 and d2 were the durations associated with the same n-graph from both

samples.

The normalised A measure between two samples was calculated according to

Equation 3.5:

An(S1, S2) < 1− number of similar n− graphs shared
total number of n− graphs shared

(3.5)

The similarity measure A was used along with the generalised degree of disorder

metrics mentioned above.

A pro�le or template for legitimate users was formulated by determining the

average metric for n-graphs (from all samples for that user)17. The KNN method

16Following the same rationale, the MLNN-BP could be attributed with achieving a FAR and a
FRR of 0.0285 (2.85%).

17Analogous to the measure m(A) de�ned by Bergadano et al., (2002).
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was used to cluster the templates, of average metrics, for all legitimate users. Cluster

sizes were controlled by an experimentally determined threshold.

Using measures de�ned by Bergadano et al. (2002), a query sample was con-

�rmed as belonging to a legitimate user if:

1. The A measure was within the same cluster as the legitimate user X.

2. md(A,X) was the closest value to m(A) within the same cluster.

For the experiment, 19 participants (designated legitimate users) provided 5

typing samples each. Another 17 (designated impostors) provided 27 typing samples.

The text that participants were required to be typed was stated as being complex

and not easily typed. Data collection was unsupervised.

There were 2,223 samples used to test for false acceptance, whilst each of the

legitimate users' 5 samples were used to test for false rejection. The results were a

FAR of 0.00045 (0.045%) and a FRR of 0.0. These are excellent results, though the

small number of samples available for testing false rejection means that the granu-

larity of the corresponding rate (FRR) was very course. Also, the small number of

legitimate users (whose data was used for training purposes) could a�ect con�dence

in the ability to generalise based on these results.

The next section presents a very brief review of some experimental work where

dynamic veri�cation was investigated.

3.4.2 Dynamic Veri�cation

The research �ndings and methodological issues relating to keystroke dynamics ex-

periments involving dynamic veri�cation, as conducted by the authors of the papers

reviewed, are summarised in Table 3.3.

Leggett et al. (1991) based their investigation on previous research (Umphress

and Williams, 1985; Leggett and Williams, 1988), but extended the concepts to

explore the idea of dynamic veri�cation. They attempted to improve the accuracy

achieved in the previous studies, whilst developing their continuous monitoring ap-

plication.
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Their experiment used the very same data as that collected by Leggett and

Williams (1988). They had 36 participants provide one sample each over 2 collection

sessions. In both sessions participants entered 537 characters of prose; the �rst set

was used in determining the reference template, while the second set was used as

test data. Keystroke events were captured at a resolution of 10 milliseconds, and

keystroke latency was the metric used. They applied the same �lters to the data as

did Leggett and Williams (1988).

The di�erence was the analysis method applied to the data. A reference template

was obtained by storing the frequency, mean and standard deviation of each digraph

in a 26 x 26 matrix (letters that make up the digraph were used as indices of

the matrix). Templates obtained from test samples were then compared with the

reference template by considering the next keystroke and time values and applying

sequential statistic theory to compare digraph times. The results were less than

encouraging, with a FAR of 0.1111 (11.11%) and a FRR of 0.1281 (12.81%).

Mahar et al. (1995) critically reviewed the experimental methods, particularly

the statistical analysis, used in the studies by (Umphress and Williams, 1985;

Leggett and Williams, 1988; Leggett et al., 1991) and prepared an improved ex-

perimental design. They had 67 participants provide samples in 1 collection session.

Each participant was required to twice type 30 high frequency words and 6 other

words (their name or a word of similar length). There were 10 words comprising two

characters, 10 words comprising four characters, and 10 words comprising six char-

acters. The length of the name (or equivalent) was not stated, but if an 8 character

name is assumed, the total number of characters per sample would be approximately

168.

The objectives of the study were to validate the aforementioned deterministic

statistical analysis methods by testing three key factors in the analysis that may

have a�ected the veri�cation accuracy achieved. Firstly, it was determined that

there was a marked heterogeneity of variance in the latency with which participants

type di�erent digraphs, and this variance exerted an e�ect on the accuracy of identity

veri�cation.
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Mahar et al. (1995) showed that the overall standard deviation, used in the pre-

vious experiments as a measure of tolerance, was inappropriate for making the �nal

veri�cation decision. Instead, they demonstrated that a digraph-speci�c standard

deviation estimate improved accuracy.

Secondly, in the previous research, the maximum allowable separation between

test and reference digraphs was set at 0.5 standard deviations, and the minimum

proportion of test digraphs required to pass the maximum allowable separation test,

before veri�cation was assumed, was 60%. Mahar et al. (1995) indicated that a

minimum proportion of 70% of test digraphs, with a maximum allowable separation

of 1.5 standard deviations gave improved accuracy, when compared with the previous

experiments.

After establishing the above results, the correctness of applying the upper time

limit �lter of 500 milliseconds per digraph (as used by Leggett and Williams (1988)),

was tested. The results con�rmed that this upper limit would on average yield opti-

mal veri�cation rates. However, considering the emphasis on the term �on average�,

and the fact that the Leggett and Williams (1988) experiment improved only a little

on the results achieved by Umphress and Williams (1985) (who applied on upper

limit of 750 milliseconds), the upper limit recommended here could not be considered

de�nitive (but a recommendation only).

Studies by Monrose and Rubin (1997) and (2000) continued the investigation

of dynamic veri�cation using statistical techniques. The two metrics used were the

keystroke duration and digraph latency, rather than just the one metric�keystroke

latency (refer section 3.3).

The �rst study had 42 participants type text of approximately 3 sentences. Infor-

mation about the character length of the sentences, the number of samples provided

per participant, and the number of collection sessions was not made available in

their paper.

In the second study, 63 participants provided typing samples, but no information

on the character length of samples was provided. We may assume that as the

experiment followed the methodology of that used by Joyce and Gupta (1990),
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that samples were approximately 32 characters in length. As with their previous

experiment, no information was provided on the number of samples per participant

or the number of data collection sessions. It was stated that data collection was

unsupervised. This fact and the lack of information about data collection, raises

some validity concerns.

The two investigations were for the purpose of identi�cation rather than veri�-

cation. Although the authors believed that the classi�ers used could achieve similar

accuracy for both purposes, this was not demonstrated.

A similar statistical method used by Joyce and Gupta (1990) for attaining the

reference templates was used in these studies, although a di�erent classi�cation

approach was adopted. In the �rst study, three classi�ers were used; in the second

study, a fourth classi�ers was used in addition to the three from the �rst study.

The four classi�ers were: the Euclidean distance measure; the Non-Weighted

probability; the Weighted probability; and the Bayesian classi�er. In the �rst study,

the best results were achieved with the Weighted probability classi�er, where correct

identi�cation occurred with 90.7% accuracy. In the second study, the best results

were achieved with the Bayesian classi�er, where correct identi�cation occurred with

92.14% accuracy.

The results of the experiments just discussed did not achieve desirable accuracy.

Also, there were concerns about various aspects of the experiments that did not

promote con�dence in the results. This may explain why investigations into dynamic

veri�cation are not common.

The next section summarises the issues related to keystroke dynamics research,

and discusses why this biometric characteristic was used for experiment in this study.

3.5 Summary of Keystroke Dynamics

The preceding review provides the following information about keystroke dynamics:

• Keystroke dynamics has been empirically investigated since approximately

1980 (a period of 30 years at time of this dissertation).
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• Though early results in this �eld of investigation were not as accurate as

other biometrics characteristics (when used for authentication purposes), much

improvement has been demonstrated since 1993 (with more promising results

achieved).

• The purpose of an experiment, in relation to data collection, is crucial. For

example with static veri�cation, the text (prose, password, or phrase) upon

which analysis is to be performed, a�ects data collection decisions. The length

and composition of the text (including any �ltering) are also important. The

number of samples to be collected from each participant needs to be deter-

mined. Note that the number of samples collected may be in�uenced by the

classi�cation method chosen.

• There have been a number of methods utilised for analysis or classi�cation of

typing patterns. The approach by early researchers, using deterministic sta-

tistical calculations, has been surpassed by more modern pattern recognition

techniques. In particular, the use of ANNs has been shown to be the most

e�ective, though there are operational considerations that require studious

attention.

• No common standards in conducting experiments involving keystroke dynam-

ics have been articulated. However, this is also true of other biometric char-

acteristics.

Therefore, certain preliminary decisions need to be made, as early as possible,

when implementing a biometric system that incorporates keystroke dynamics:

• Will the text be composed of prose, a password, or a phrase? If a password

is used, the length is usually minimal (between 6 and 8 characters) and may

a�ect accuracy (Obaidat and Sadoun, 1997). If a phrase is used, between 10

and 15 characters should provide the required accuracy (Obaidat and Sadoun,

1997; Abernethy et al., 2004).
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• Will the text be chosen by the participants (as in a password), or will it be

composed of particular character combinations as suggested by Gaines et al.

(1980)?

• Will �ltering be applied to the collection of data? If so, what upper time

limit between digraphs will be imposed? Are correctly typed samples required

(i.e. erroneous samples disregarded), or does the method allow for erroneous

input? Are uppercase and lowercase characters allowed in the text, or is the

text restricted to lowercase only.

• Once data has been collected, will �ltering be applied to the raw data prior

to classi�cation. As demonstrated in the review of literature, the more recent

research e�orts apply �ltering at this stage in acknowledgement of the accepted

variability of raw keystroke dynamics data.

• What method of analysis or classi�cation will be used?

Some researchers maintain that keystroke dynamics remains a di�cult task

when attempting to attain the accuracy comparable to that achieved by physi-

ological biometric characteristics, such as �ngerprints and retinal scans, because

keystroke dynamics is a behavioural characteristic with high variability and is un-

stable (Bergadano et al., 2002). It is undeniable that keystroke dynamics exhibits

more variability and cannot attain accuracy comparable to that achieved by �nger-

prints and retinal scans.

In many of the empirical investigations discussed in this chapter, researchers de-

signed experiments where (a small number of) participants were required to enter a

small number of samples comprising hundreds of characters of prose. This practice

disregards the de�nition of keystroke dynamics, where the emphasis is on habitual

typing pattern. This means that the e�ectiveness of keystroke dynamics is achieved

when users type many samples of text that is familiar to them, and by that re-

peated entry, the users develop a habitual style of typing that text (which is highly

distinguishable from other users who type the same text). As demonstrated in the

review, the text only needs to be between 10 and 15 characters in length (Obaidat

and Sadoun, 1997; Abernethy et al., 2004).
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Though not as accurate as some other biometric characteristics (such as �n-

gerprints and retinal scans), if treated carefully and correctly, keystroke dynamics

can be a valuable contributor to an authentication system (particularly if used in

a multi-modal authentication system). It o�ers the following advantages that the

more accurate characteristics can not, whilst still maintaining an acceptable level of

accuracy:

1. Current computer authentication systems, using traditional methods, require

users to enter their username and password on a keyboard. So, computer users

are already accustomed to authentication based on keyboard interaction.

2. The more accurate biometric characteristics may not be accepted by users. For

example, retinal scans are highly intrusive (refer Chapter 2 section 2.2.4.4);

people may be reluctant to go through the required procedure on a regular

daily basis. Fingerprints are commonly associated with criminal investigation

and legal proof of identity, so people may be wary of providing their �ngerprints

with the knowledge that they will be stored in a database and could be stolen

or mishandled. Keystroke dynamics does not su�er from these problems of

acceptability; computer users type regularly as part of their interaction with

the computer, and so would presumably �nd this more acceptable as a basis for

regular authentication. Keystroke dynamics does not have the same perceived

association with the criminal element that �ngerprints do.

3. Keystroke dynamics is cost e�ective; it requires no additional expensive hard-

ware and/or software that other characteristics require, and can be imple-

mented and maintained for minimal cost. For authentication systems asso-

ciated with Web based applications, this is particularly pertinent. It would

place an undue burden on consumers, to expect them to supply the hard-

ware/software required for authentication by many of the physical biometric

characteristics.

4. Even if one doubts the capability of keystroke dynamics to provide accurate

authentication for a uni-modal biometric system, the characteristic may still be
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advantageous in a multi-modal biometric system. Because of its ease of imple-

mentation and cost e�ectiveness (compared to other characteristics), keystroke

dynamics could be given serious consideration as a viable option for such a

system, even though it may demonstrate more variability than other biometric

characteristics. System parameters could be employed to counterbalance the

variability associated with keystroke dynamics; thus reliability and robustness

may be attained.

Keystroke dynamics has been chosen for this experiment for the above reasons,

and the issues mentioned in this summary were given careful consideration. The

details are discussed in Chapter 5 (Research Method).

3.6 Conclusion

In this chapter, the conceptual basis for keystroke dynamics was provided in section

3.2. Section 3.3 described the metrics used in keystroke dynamics research, including

the method of calculating the metrics.

A large portion of the chapter was dedicated to a review of keystroke dynamics

related research in section 3.4, which covered both static and dynamic veri�cation

approaches (sections 3.4.1 and 3.4.2 respectively). This demonstrated that keystroke

dynamics can be used with con�dence, and can be a valuable tool in the system

security armoury.

Finally, section 3.5 summarised the advantages and concerns associated with

keystroke dynamics. The summary included reasons for choosing keystroke dy-

namics for this experiment, and highlighted the issues of concern that need careful

consideration when using this biometric characteristic.



Chapter 4

Fingerprint Recognition

4.1 Introduction

This chapter provides a discussion of the biometric characteristic known as �nger-

print recognition. The overview (section 4.2) provides some background and history

of the subject area.

Section 4.3 provides a description of the inherent features (distinguishing char-

acteristics) associated with �ngerprints, both on a global level (section 4.3.1) and a

local level (section 4.3.2).

With today's computer technology, �ngerprint recognition is generally imple-

mented as an Automated Fingerprint Identi�cation System (AFIS). Section 4.4 lists

and explains the stages of an AFIS, and includes an overview of �ngerprint classi�-

cation (section 4.4.5) and veri�cation (section 4.4.6).

Section 4.5 reviews research e�orts that have employed minutiae-based matching

methods of veri�cation; the method most related to the current study. This provides

some detail of the techniques used, and also serves as a basis for comparison of the

experimental results from the current study with those of previous studies.

Finally, 4.6 summarises the main tasks involved in a minutiae-based matching

approach, and highlights the di�erent approach adopted in the current experiment

(and the reasons for this di�erent approach). Section 4.7 then provides a conclusion

to the chapter.
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4.2 Overview of Fingerprint Recognition

A �ngerprint is produced when the bulbous region of the distal phalanx (of any

�nger or thumb) makes contact with another surface, thus creating a duplicate

impression of the existent characteristics of that �nger tip (Faulds, 1880; Galton,

1892). Better quality �ngerprints are obtained when the surface is smooth and

�at. However, �ngerprints are obtainable from course and uneven surfaces; though

typically quality is compromised.

The most prominent characteristics of a �ngerprint impression are caused by

the papillary ridges (and the consequent valleys or furrows) of the epidermal layer

of the �nger. Figure 4.1 provides an example �ngerprint illustrating the ridges and

furrows, which form a pattern (known as the ridge pattern) that is distinguishable to

the naked eye. There are also minute characteristics of the individual ridges (known

as minutiae) that are not as easily distinguishable by the naked eye.

Figure 4.1: Fingerprint Impression Illustrating Ridges And Furrows

Ridge characteristics are discussed in more detail in section 4.3. Their signif-

icance for identi�cation and veri�cation are discussed in sections 4.4.5 and 4.4.6

respectively.
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Historically, there is archaeological evidence that ancient civilisations used �n-

gerprint impressions in clay or on transcripts to seal deeds, contracts of loan and

other transactions. Cummins (1941) has suggested that the primary intent of these

impressions was to bear witness to the terms of agreement.

The use of �ngerprints as a form of identi�cation is a contrasting concept, having

its origin in the late 19th century, for the purpose of maintaining a correct record of

criminal identities. Law enforcement seeks to establish the true identity of criminals,

and thus maintain the integrity of criminal record systems. This is as true today as

it was in the late 19th century. However in the 21st century, verifying identity has

also become an integral part of authentication systems on computers and computer

networks.

The earliest system of identi�cation adopted by law enforcement agencies in the

`western world', was the anthropometric system introduced by Alphonse Bertillon

in 1883 (Fosdick, 1915). This system, based on measurement of various parts of the

anatomy, was used by countries such as France, England, Germany, Austria, Russia,

Switzerland and parts of the United States of America until the second decade of

the 20th century (Fosdick, 1915), as either the primary or secondary system of

identi�cation.

As an o�cial identi�cation system it met with some success, but su�ered from

the following limitations (Fosdick, 1915):

• For permanence reasons, measurement required the criminal to be of full phys-

ical maturity.

• The measurement instruments were intricate in design and their precision de-

teriorated in a short period of time with any inappropriate handling.

• The collection of accurate measurements required specialised training, which

was not always available because of the small number of quali�ed trainers.

• The system involved collection of many body measurements, and was therefore

more onerous than the simpler collection of �ngerprints.
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Because of these limitations, and the growing evidence that �ngerprints provided

a more accurate and manageable alternative, �ngerprints became the preferred pri-

mary method of identi�cation by the �rst decade of the 20th century (Fosdick,

1915).

The �rst reporting of the basic components of �ngerprints (ridges, furrows, and

pores) was in 1684 by Nehemiah Grew (Grew, 1684). However, it was not until 1823

that J.E. Purkinje formally speci�ed nine categories or classes of basic ridge patterns

(Cummins and Kennedy, 1940). Purkinje presented hand drawings and descriptions

of these nine classes as part of his dissertation �Commentatio de examine physiologico

organi visus et systematis cutanei�. These classes will be discussed (in section 4.4.5)

in relation to the classes used for ridge pattern classi�cation today.

It should be noted that neither Grew nor Purkinje made any supposition as

to the individuality of the con�guration of ridge patterns nor did they allude to

the permanence of these patterns (Cummins and Kennedy, 1940). In fact, their

existence was only recognised in relation to their biological characteristics; there

was no speculation that they could be utilised as a form of identi�cation.

The earliest known publication proposing the possible individuality of �nger-

prints and their use for identi�cation was published by Henry Faulds in 1880 based

on his empirical observations (Faulds, 1880). His collection method was achieved by

spreading printers ink on a smooth �at surface, pressing the desired �nger evenly

onto the inked surface, and then onto slightly dampened paper.

Faulds (1880) proposed the possibility of the permanence of ridge patterns,

though the experimental methodology�in relation to the quantity of �ngerprint

samples collected and the basis upon which comparison of �ngerprint impressions

was founded�was limited. Further information about his methodology became

available in a later publication (Faulds, 1905), after other researchers had published

their �ndings in this �eld (Galton, 1892; Henry, 1900).

Sir William Herschel maintained that he began examining the characteristics of

�ngerprints in 1858, whilst posted as a magistrate to Indian, continuing until his

retirement in 1879 (Herschel, 1916). In 1862, he strongly recommended that the
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Government of Bengal employ the use of �ngerprints to validate claims before the

courts. In 1877, whilst magistrate and controller of criminal courts, jails, and reg-

istration of deeds, Herschel implemented the use of �ngerprints for non-repudiation

purposes.

It should be noted that this use of �ngerprints was implemented as a form of

identi�cation. Criminals before the court had their identity formally con�rmed

(based on �ngerprints held on record), so that no other person could be substituted

for the real criminal (as apparently was common practice at the time in India). Like

Faulds, Herschel did not publish a full account of his methodology (Herschel, 1916)

until after other researchers had published their �ndings in this �eld (Galton, 1892;

Henry, 1900).

Sir Francis Galton (who accredited Sir William Herschel for his inspiration and

early �ngerprint samples) speci�ed three major classes of ridge patterns, with each

class containing possible variations (Galton, 1892). The major classes were the

arch, the loop, and the whorl (refer section 4.4.5). He developed the �rst systematic

approach to �ngerprint classi�cation by specifying a method of indexing �ngerprints,

based on the class divisions, to facilitate searching a collection of �ngerprints for a

particular print.

More importantly, Galton established the existence of the minute ridge charac-

teristics known as minutia points or minutiae (section 4.3.2). He proposed that the

con�guration of these features is individual to each digit for every person, and that

they remained persistent throughout ones lifetime. It is this property of �ngerprints

that provides the means to recognise discernible con�gurations or patterns and thus

verify identity based on their distinctiveness.

Galton also noted the existence of the pores along the papillary ridges, and like

Faulds before him, recognised that the bodily secretions through these pores left a

residual �ngerprint (on any surface that the �nger came into contact with) of good

enough quality for identi�cation. The secretions of the pores on papillary ridges

facilitates the collection of latent �ngerprint used extensively in law enforcement

(latent �ngerprints are discussed in more detail in section 4.4.1.2).
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In 1891, Sir Edward Henry was appointed Inspector General of Police in Bengal,

India. In 1897, he introduced �ngerprints as an auxiliary form of identi�cation to

the then utilised Bertillon system (Polson, 1951). By 1899, �ngerprints were given

preference as the primary system of identi�cation and the Bertillon system was

phased out of use. In 1901, Sir Edward Henry, then the Assistant Commissioner of

the Metropolitan Police in London (in charge of criminal investigations), introduced

what is now commonly referred to as the Henry system of identi�cation, based

entirely on �ngerprints (Polson, 1951).

Henry extended the work of Galton and established a classi�cation system which

was the �rst to incorporate the use of core and delta points for �ngerprint classi�-

cation (Henry, 1900). He also established an indexing system that was practically

implementable. Henry's system of identi�cation forms the basis, with re�nements

and/or modi�cations, for the methods that are used by most law enforcement agen-

cies in the world today (Polson, 1951).

Since the time of the �rst introduction of �ngerprints for identi�cation by Sir

Edward Henry, much research and advancement has occurred. These developments

will be discussed in the following sections. However, as the aforementioned pro-

posals rely on the uniqueness of �ngerprints (between di�erent people), it would

advantageous to explore this assumption. The next section discusses this issue.

4.2.1 The Uniqueness of Fingerprint

Since the time of Galton (1892), it has been widely accepted that every human

�nger has unique local features, di�erent from that person's other �ngers, and those

of every other person.

Law enforcement agencies in particular are keen advocates of the acceptance of

this `fact', as it forms a basis for placing criminals at crime scenes. However, this

so called `fact' has been based on empirical observation only. In recent years, some

researchers and law enforcement experts have expressed doubt as to the veracity of

this accepted `fact', as it has never been scienti�cally proved (Specter, 2002).
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Whilst it is considered extremely improbably that two matching �ngerprints

could belong to two di�erent persons, there have been cases in recent years that

caste su�cient doubt on the assumption that it is not possible (Specter, 2002). A

contributing factor in these cases is that convictions have been achieved based on

the collection, from the crime scene, of only one �ngerprint. As there has been

no scienti�c proof that two matching �ngerprints from di�erent persons could not

occur, basing a conviction on only one �ngerprint is considered by some as lawfully

dangerous. Also, as mentioned in section 4.4.1.2, conditions at a crime scene do not

always favour the collection of good quality or complete latent �ngerprints that can

then be used to accurately identify a perpetrator.

The doubt over this issue has come up against strong opposition from the major-

ity of those in law enforcement, because it would caste doubt on a well established

presentation of evidence in criminal court cases, and bring into question convictions

achieved based solely on �ngerprint evidence.

Both parties agree on this point:

It is an acceptable practice to use latent �ngerprints to help

identify criminals.

However, they di�er on this question:

Is it acceptable to suggest that the latent �ngerprint/s could

only have come from a particular suspect, and to use this as

undeniable proof to gain a conviction?

It does seem unlikely, with the size of the human population, that there could

ever be undeniable scienti�c proof of the uniqueness of each individual �ngerprint.

However, with research speci�cally targeted to investigate the hypothesis, there

could be very strong inferred evidence gained. For now the impasse continues,

however, with perhaps less attention or urgency since the development and wide

adoption of DNA testing.

The next section discusses in detail the characteristics or features that allow

�ngerprint recognition to be utilised for identi�cation and veri�cation.
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4.3 Fingerprint Features

The epidermal layer of the distal phalanx of a �nger is covered with concentric raised

friction ridges (Digital Persona, 2004). As well as helping us to grip objects, these

ridges provide distinct characteristics or features. The ridges are formally known as

papillary ridges because minuscule perspiration pores are proli�c along them (Inbau,

1934). For the purpose of recognition, �ngerprint features can be broadly classi�ed

into two categories: global and local.

4.3.1 Global Features

Global features are those �ngerprint characteristics that are visible to the naked eye

(Digital Persona, 2004). The following is a description of global �ngerprint features,

some of which are illustrated in Figure 4.2:

• Pattern area: the region of the �ngerprint where ridge lines form highly dis-

tinguishable shapes or patterns and are clearly apparent. Ridge lines in these

regions tend to exhibit high curvature.

• Basic ridge pattern: the discernible patterns made by ridge lines that have

been de�ned into categories or classes. They are located within the pattern

area, and are broadly classi�ed as: arch, loop, and whorl. These basic ridge

patterns are described in section 4.4.5.

• Core point: the upper most point (in relation to the tip of the �nger) of the

inner most ridge line (Henry, 1900). Core points are typically (though not

always) located near the centre of the pattern area. Figure 4.2 provides an

example of a core point. Core points (if present and determinable) can be

used as a reference point for determining class (refer section 4.4.5), to assist

in �ngerprint image alignment, and also to facilitate ridge counting.

• A delta point may be formed in two ways (Henry, 1900):

1. When a single ridge abruptly bifurcates into two, and the two diverging

ridges depart in opposite directions (refer Figure 4.2 for an example).



4.3. FINGERPRINT FEATURES 163

2. When two ridges that had previously been running side by side abruptly

diverge into opposite directions.

Along with the core point, a delta point (if present and determinable) can be

used as a reference point for determining class (refer section 4.4.5), to assist

in �ngerprint image alignment, and also to facilitate ridge counting.

Figure 4.2: Fingerprint Impression Illustrating Core And Delta Points

• Ridge count: the number of ridges crossing the imaginary line segment between

a core point and a delta point.

• Minutiae count: the total number of minutia points (refer section 4.3.2).

Because global features are more easily detectable than local features, they are

commonly used to classify �ngerprints into general categories or classes (Wayman

et al., 2005). These categories are based on the basic ridge patterns (section 4.4.5).

Categorising �ngerprints allows for e�cient identi�cation, within large record sys-

tems, during the validation phase. Once the identi�cation process narrows the search

space to one category, veri�cation becomes a more manageable task. Importantly,

global features are insu�ciently distinctive enough for the purpose of veri�cation.
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4.3.2 Local Features

Local features di�er from global features in that they are not visible to the naked

eye. Fingerprint ridges are not continuous straight lines; they may break, fork,

change direction, or terminate (Digital Persona, 2004). The point of discontinuity

is called a minutia point (the more common plural term being minutiae) (Galton,

1892).

There are �ve characteristics of a minutia point (Digital Persona, 2004):

1. Type: there are really only two primary types (Yager and Amin, 2004b).

However, variations of the two primary types occur, as described below and

illustrated in Figure 4.3:

• Ridge termination is when a ridge ends abruptly. Two variations are:

� Independent ridge: a short ridge terminating at both ends.

� Dot or Island: a very small ridge that appears to be a dot.

• Ridge bifurcation (branching or forking) is when a ridge divides into two

or more individual ridges. A variation is:

� Enclosure: a ridge that divides into two and then reunites to create

an enclosed area. The length of the enclosure is typically quite small,

with the ridges reuniting shortly after diverging.

2. Position: the location of the minutia point, determined as x, y coordinates

in a two dimensional coordinate system. Figure 4.4 provides an example of

minutiae whose positions are registered in a coordinate system; grid lines on

the x axis are spaced 40 units apart and grid lines on the y axis are spaced 50

units apart. Each minutia point is identi�ed by a red circle.

3. Spatial frequency: the average distance between ridges in the neighbourhood

of a minutia.
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Figure 4.3: Local Fingerprint Features Types

4. Orientation: the angle between the tangent to the ridge at a minutia position

and the horizontal axis (i.e. the axis at right angles to the vertical axis of the

�nger). Note that the �ridge� used for calculating the orientation is determined

according to the minutia type�termination or bifurcation (Maltoni et al.,

2003):

• For a terminating minutia, the orientation is determined by the ridge that

approaches the point.

• For a bifurcating minutia, the orientation is determined by the centre line

of the furrow that approaches the point.

In Figure 4.4, the red tail extending from a red circle (which highlights a

minutia point), indicates the direction of the tangent which provides the ori-

entation.

5. Curvature: the rate of change of the ridge orientation as the ridge approaches

a minutia. As just described in point 4 above, the ridge used for calculation

is determined according to the minutia type.
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Figure 4.4: Local Features Illustrating Minutiae Positions

In automated systems, considerable di�culties have been encountered when dis-

tinguishing between the minutia types listed above (Yager and Amin, 2004b). Usu-

ally, to limit uncertainty, only the primary types are di�erentiated (i.e. ridge termi-

nation and ridge bifurcation).

These local features of �ngerprint ridges are the unique characteristics used for

veri�cation during the validation phase. It is possible for two or more individuals

to have almost identical global features but still be di�erentiated by their local

features. Therefore, during the validation phase, global features are better suited to

identi�cation, whereas local features are necessary for veri�cation.

Typically, all �ngers have a di�erent number of minutiae. Even if two �ngers

have the same number of minutiae, they will be in di�erent relative positions. This

relative positioning of minutiae forms a unique con�guration or pattern. It is this

pattern and the other minutiae characteristics that are used in the veri�cation pro-

cess (Maltoni et al., 2003).

Previous studies have shown that successive �ngerprint scans of the same �n-

ger produce images that almost never match perfectly (Digital Persona, 2004).
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That is, two di�erent prints of the same �nger will rarely be identical. Reasons for

this situation could be sensor inaccuracy (resulting in missing data or introduced ar-

tifacts), positional variation due to instrument noise, imperfect imaging conditions,

changes in physiological characteristics, ambient conditions, and the elasticity of the

epidermal layer of the �nger (Maltoni et al., 2003). However, the distinctive feature

patterns will still be evident.

4.4 Automated Fingerprint Identi�cation Systems

The early �ngerprint identi�cation process involved the detailed comparison of la-

tent �ngerprints (refer section 4.4.1.2) with images stored in a record system; the

comparison was performed manually by �ngerprint experts. Because of advances in

technology and the huge number of �ngerprint images stored in modern databases,

automated computer systems are now employed for this task (Maltoni et al., 2003).

However, physical (human) con�rmation may still be required after computerised

systems have narrowed the search, especially if the identi�cation is to be used in

some type of legal proceedings.

The �rst paper to consider automated �ngerprint comparison was published

by Trauring (1963). His proposal included allowance for a�ne transformation of

minutiae locations, and provided a tolerance level allowing for the variability issues

mentioned in section 4.3.2; although his work did attempt to limit positional and

orientation variability by the use of a mechanical �nger placement guide.

The method was based on the determination of three non-collinear minutiae,

designated as `reference minutiae', and an arbitrary number of other minutiae, des-

ignated as `test minutiae'. Data stored about the reference minutiae were the type,

position, orientation, and position relative to their closest neighbours. Data stored

about the test minutiae were the type, orientation, and position relative to the three

reference minutiae.

When authenticating at a later time, the same data about the respective minutiae

were calculated and the results compared to the stored data (with allowance made for

variability). Results were calculated utilising simultaneous mathematical equations.
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After Trauring, research e�orts explored the use of digital �ngerprint processing

techniques which lead to the development of the �rst Automated Fingerprint Iden-

ti�cation System (AFIS) in 1991 (Kristensen et al., 2007). Since then, a substantial

body of work has been undertaken (by law enforcement agencies, private corpo-

rations, and academic institutions) to develop and improve accurate and robust

algorithms utilised in AFISs (Yager and Amin, 2004b).

The two main application areas for AFIS technologies are in law enforcement

and the private sector. The di�erences between these application areas are:

• The size of the databases maintained. Typically, the criminal databases main-

tained by law enforcement agencies are much larger than those maintained by

small corporations for biometric identi�cation systems.

• The quality of �ngerprint images. Law enforcement agencies must deal with

inconsistency of quality due to the two types of �ngerprints captured; those

captured from criminals in custody and latent �ngerprints collected from crime

scenes. Biometric identi�cation systems typically deal with images of con-

sistent quality, as they are usually captured by the same device under well

regulated conditions.

However, the AFISs researched and developed by law enforcement and private

sector interests follow the same basic stages (Yager and Amin, 2004b):

• Fingerprint acquisition (discussed in section 4.4.1).

• Fingerprint representation (discussed in section 4.4.2).

• Pre-processing (discussed in section 4.4.3).

• Feature extraction (discussed in section 4.4.4).

• Fingerprint matching (discussed in sections 4.4.5 and 4.4.6).

Obviously, the emphasis placed on each of these stages will depend on their

relative importance to the requirements of the particular AFIS being developed.

The �ve stages are discussed in more detail in the following sections.
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4.4.1 Fingerprint Acquisition

The purpose of �ngerprint acquisition is to collect and maintain an accurate record

system containing the images (and/or derived data) of all those �ngerprinted. His-

torically, this meant the storage of the original card with the �ngerprints imprinted

on it or a photographic image of the card (see section 4.4.1.1). As time progressed,

hardcopy record systems became very large and cumbersome to maintain and search.

More recently, electronic databases have been utilised to take advantage of the fast

processing and searching capabilities, and memory capacity, available on modern

computer systems.

There are essentially two broad methods for the acquisition of �ngerprints:

1. The historical method is called the `ink technique'. This process is also termed

o�-line �ngerprint acquisition (discussed in section 4.4.1.1). Additionally, law

enforcement has evolved a special case of o�-line �ngerprint acquisition which

involves the collection of `latent' �ngerprints from crime scenes (discussed in

section 4.4.1.2).

2. The more modern method uses scanning devices to capture �ngerprints. This

process is termed live-scan �ngerprint acquisition (discussed in section 4.4.1.3),

and is the method used in biometric systems.

4.4.1.1 O�-Line Fingerprint Acquisition

O�-line �ngerprint acquisition is the historical way of obtaining �ngerprints. The

process involved the application of a thin layer of ink evenly over a subject's �nger.

This usually meant pressing the subject's �nger evenly and �rmly against an even

�at surface (such as metal plate), that had been previously covered with ink (Galton,

1892). Once the ink was applied to the �nger, the �nger was pressed evenly and

�rmly against a paper card. All eight �ngers and two thumbs were thus treated.

Historically, a photographic image for each �ngerprint card was then obtained.

As time progressed, a digital image for o�-line �ngerprints was obtained by scanning

the card, or photographic image, with a digital scanning device.
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It should be noted that the collection of �ngerprints utilising this method was

performed under favourable conditions, and consequently in most cases they were

of superior quality (though this was not always the case due to inept or careless

workmanship) to latent �ngerprints gathered from crime scenes.

4.4.1.2 Latent Fingerprints

The perspiration pores along the papillary ridges secrete a moist substance, consist-

ing of salts, water and oil (Inbau, 1934). The residue from these secretions leaves

an impression of the ridges of the �nger on any surface that it comes into contact

with. These impressions are known as `latent' �ngerprints. In law enforcement,

latent �ngerprints have become a crucial tool for the identi�cation, and conviction,

of criminals.

The use of latent �ngerprints requires (Maltoni et al., 2003):

• The collection of �ngerprints from criminals who have been apprehended be-

cause of some transgression of the law and/or the collection of �ngerprints

from suspects or a population which may include the perpetrator (with their

permission).

• The maintenance of an accurate record system consisting of the true identity

of the criminals and their �ngerprints.

• The discovery and collection of impressions of �ngerprints (i.e. latent �nger-

prints) left by the perpetrator at a crime scene.

• The comparison of latent �ngerprints with those maintained in the record

system.

There are numerous methods developed by forensic scientists to detect and collect

or `lift' latent �ngerprints from the many di�erent surfaces on which they may occur.

To expose latent �ngerprints, technicians use �ngerprint powder, fuming and other

techniques.

Because of the nature or properties of the various surfaces on which latent �n-

gerprints may be detected, it is typical to group them into two basic categories:
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1. Porous surfaces: these are normally conducive to the preservation of latent

�ngerprints because the residue can soak into the surface. Some examples of

porous surfaces would be paper, un�nished wood, and cardboard.

2. Non-porous surfaces: these are less conducive to the preservation of latent

�ngerprints; because the residue may just be lying on the surface, the prints

are in a much more fragile situation. Even the slightest handling can disturb

a latent �ngerprint on such surfaces, thus compromising the accuracy and

usefulness of the lifted print. Some examples of non-porous surfaces would be

plastic, glass, and metal.

The Latent Print Unit (LPU) of the United States of America's Federal Bureau

of Investigation (FBI) suggest the sequential procedures presented in Table 4.1, for

detecting and lifting latent �ngerprints (Trozzi et al., 2000). Note that the proce-

dures listed are a general approach which may need modi�cation due to particular

crime scene circumstances. For example, certain surfaces may require application

of speci�c chemical agents. Also, a latent �ngerprint may be embedded in blood or

some other substance.

Step Porous Surfaces Non-porous Surfaces

1 Visual Visual
2 Fluorescence by laser of alternate

light
Fluorescence by laser of alternate
light

3 Iodine Fuming Cyanoacrylate Fuming
4 DFO (1,8-Diaza�uoren-9-one) Laser or alternate light source
5 Laser or alternate light source Cyanoacrylate Dye
6 Ninhydrin Laser or alternate light source
7 Physical Developer Vacuum Metal Deposition
8 Powder

Table 4.1: FBI Latent Fingerprint Collection Procedures

Explanation of the general steps listed in Table 4.1:

• Visual (Step 1) - Examine all evidence visually before using any latent �n-

gerprint development technique. The evidence should be well illuminated,

and any visible latent �ngerprints should be photographed prior to further

processing.
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• Fluorescence (Step 2) - In a darkened room or enclosure, aim the light source at

the object. View the object through an appropriately coloured �lter, and pho-

tograph the latent �ngerprints exposed by the light source. No pre-treatment

is required, therefore no alteration of the exposed latent �ngerprints occur.

• Utilise latent �ngerprint development techniques (Steps 3 onward). As indi-

cated in Table 4.1, this may entail application of various chemicals, dyes, pow-

ders, or vapours (fumes). These should be applied sequentially as instructed,

and re-examination of exposed latent �ngerprints (using a light source) should

occur at the appropriate time. To lift a latent �ngerprint from an object (after

it has been exposed and photographed), apply black, grey, or white powder to

the surface with a long hair brush. Use a short hair brush to remove excess

powder. Use caution and avoid over brushing as loss of clarity of the latent

�ngerprint may eventuate. Use transparent tape applied to the exposed latent

�ngerprint to lift the impression from the object surface onto the tape. Place

tape onto a backing card, ensuring that the color of the backing card contrasts

with the color of the powder.

Though the methods of detection and collection of latent �ngerprints have be-

come e�cient, it has been noted that latent �ngerprints are sometimes useless for

comparison (Inbau, 1934). Their collection is dependent on the quality of the im-

pression, the conditions of the crime scene, and the completeness of the latent �n-

gerprint. That is, collection is seldom performed under pristine conditions, and it

is common for latent �ngerprints to be of poor quality or incomplete (with only a

portion of the full �ngerprint being retrievable from a surface).

Therefore, establishing identity from latent �ngerprints is often very di�cult and

sometimes not possible. Identi�cation is made even more di�cult when the latent

�ngerprints of only one or two �ngers are able to be collected. In fact, it is unusual

to discover (and subsequently collect) a complete set of latent �ngerprints belonging

to a perpetrator.



4.4. AUTOMATED FINGERPRINT IDENTIFICATION SYSTEMS 173

4.4.1.3 Live-Scan Fingerprint Acquisition

Live-scan �ngerprint acquisition necessarily involves the use of a scanning device.

The �nger is scanned and data from the scanning process are extracted and stored

(usually represented as a two dimensional image). This method of acquisition is

more convenient than the o�-line method, and it is less expensive and less time

consuming (producing digital images in real time).

Fingerprint scanning devices typically comprise the following components (Mal-

toni et al., 2003):

• A sensor for scanning the �nger surface.

• An analogue to digital converter.

• A module for exchanging instructions and data with an external device (such

as a computer).

Fingerprint scanning devices utilise sensors that are generally grouped into three

common types (Xia and O'Gorman, 2003):

1. Optical sensors utilise a light source and lens to depict the characteristics of the

�ngerprint. When a �nger contacts the platen of the scanner, the light source

is triggered. The light that passes through the platen is totally re�ected when

it strikes the furrows between ridges, but the ridges themselves cause the light

to scatter. So the light re�ected from furrows demonstrates full light intensity,

whereas the light scattered by ridges has signi�cantly reduced intensity. The

re�ected light is focused by the lens onto either a Charge Coupled Device

(CCD) or a Complementary Metal-Oxide Semiconductor (CMOS):

• A CCD is an analog device that stores a small electrical charge in each

of the photo sensors on the chip when light is focused on them by the

lens . The charges are converted to voltage one pixel at a time as they

are read from the chip. The conversion of voltage to digital data is ac-

complished by a digital converter that is usually incorporated into the

scanning device.
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• A CMOS chip is a type of active pixel sensor. Circuitry next to each

photo sensor converts the light energy to a voltage. The CMOS chip

incorporates an onboard digital converter to convert the voltage to digital

data.

2. Solid-state sensors comprise an array of sensing elements that image the �n-

gerprint:

• Capacitive sensors determine the distance from the sensing surface to

�ngerprint ridges and valleys by measuring the electrical �eld strength.

The ridges and furrows of the �ngerprint can be di�erentiated by their

capacitive measurement because ridges are closer to the sensing elements

that the furrows.

• Temperature sensors di�erentiate ridges from furrows by temperature

di�erence; ridges touch the sensing surface while furrows do not, thus

producing the temperature di�erential.

In both cases, the measurement di�erentials allow for depiction of �ngerprint

characteristics that can be represented as a grey scale image.

3. Ultrasonic sensors rely on the acoustic qualities of sound waves (Bicz et al.,

1999). They provide the ability to obtain an image of the �ngerprint based

on the acoustical impedance di�erence between ridges and furrows (Schneider

and Wobschall, 1991):

• Acoustic impedance (or sound impedance) is a ratio of the sound pressure

divided by the particle velocity and the surface area, through which an

acoustic wave propagates.

• The di�erence in the acoustic impedance ratios between ridges and fur-

rows is su�cient to a�ect the amount of acoustic energy returned to the

receiver, thereby allowing a grey scale image to be produced that depicts

the characteristics of the �ngerprint.
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A digital image determined by a �ngerprint scanner has three main attributes

(Maltoni et al., 2003):

1. Resolution: indicates the number of pixels (picture elements) per square inch

(dpi). In general, an image with high resolution (greater than 500 dpi) exhibits

clear de�nition. As resolution decreases the image becomes less de�ned. This

usually results in greater di�culty when attempting to determine ridges and

identifying their features, and often leads to inaccuracy during the feature

extraction process.

2. Capture area: the dimensions of the rectangular area (height x width) read by

the sensing element. The larger the area (that is, the higher the percentage of

the full �ngerprint area), the more ridges and furrows are captured. With more

information available, there is a better chance of determining the uniqueness

of the �ngerprint.

3. Bit depth: refers to the format for expressing the intensity value of each pixel.

Speci�cally, this is given as the number of bits allocated. For example, an 8-bit

grey-scale image allows for 256 di�erent scales of grey to be used in expressing

the intensity value of each pixel.

Larger values for the above attributes results in better image quality and ac-

curacy. However, this inevitably requires greater memory capacity for storing the

image information.

Fingerprint scanners have the problem of occasional and unpredictable poor

image quality (Xia and O'Gorman, 2003). In addition, other factors discussed in

section 4.4.3 may impact on the scanning devices ability to accurately depict the

true characteristics of a �ngerprint.

4.4.2 Fingerprint Representation

After acquisition of a �ngerprint in digital form, a convenient and applicable storage

representation must be adopted. The chosen representation will be dependent on

the number of �ngerprints to be stored in a database, and the quality of information

required during successive processing stages.
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For example, law enforcement agencies (such as the FBI) maintain large databases

of �ngerprints and require e�cient storage and processing of �ngerprint images when

querying the database. This could suggest reducing the amount of data in the digital

images. However, the retention of high quality discriminatory data is a high priority

for accurate matching of �ngerprints. So, at the expense of storage and processing,

quality must be maintained.

There are two representation schemes commonly used:

• The image-based method involves storing most of the actual image data, usu-

ally in compressed format, because high quality discriminatory information

is required for accurate matching. The method entails extraction of features

from an image every time a match is required; because of this extra processing

e�ciency will be a�ected. Also, because much of the image data is stored,

substantial storage capacity is required.

This representation method is used by law enforcement agencies because ac-

curacy in the identi�cation process is critical.

• The feature extraction method involves the storage of extracted features only.

This scheme reduces the amount of storage space required, because only infor-

mation about the image (i.e. the �ngerprint features) is stored. It also means

that processing is reduced when a match is required, because the features

have already been extracted. This is the usual method employed in biometric

systems because of the real-time processing advantages. The disadvantage of

this method is that the actual image cannot be reconstructed, if it becomes

necessary. For example, if the pre-processing or feature extraction procedures

are upgraded or modi�ed, all �ngerprint images for personal in the database

would need to be re-captured. Of course, this would not be an acceptable

situation in the law enforcement arena, but would most likely be tolerated in

biometric systems.
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4.4.3 Pre-processing

Pre-processing refers to the processing of �ngerprint images obtained during the

acquisition stage�represented in the appropriate format�prior to feature extrac-

tion (Yager and Amin, 2004b)1. Pre-processing becomes necessary because of the

variations that may occur during acquisition. The variations referred to are those

between images of the same �nger acquired at di�erent times. These can occur for

numerous reasons, including di�erent positional �nger placement on the scanning

device for successive scans, and variability in the image quality resulting from the

scanning process.

According to Maltoni et al., (2003) �ngerprint images of the same �nger, taken

at di�erent times, demonstrate a degree of variability and rarely match perfectly

because of the following factors:

• displacement: translational deviation along the x and/or y axes, resulting from

the di�erences in positional �nger placement on the scanner.

• rotation: angular deviation in relation to the vertical axis, resulting from the

di�erences in �nger orientation during placement on the scanner.

• partial overlap: sometimes only part of a �ngerprint is captured during the

scanning process, because of the di�erences in �nger placement on the device.

This can result in di�erent parts of a �ngerprint being captured (where there is

less than full overlap between prints), or parts of the �ngerprint being outside

the sensor capture area resulting in missing content.

• non-linear distortion: due to the elasticity of the skin and the pressure applied

as the �nger comes into contact with the scanner surface, distortion may oc-

cur as the sensed 3-D object (the �nger) is scanned and rendered into a 2-D

representation (because the scanner has a �at surface). This distortion could

manifest as a global di�erence in scale, or localised distortion a�ecting the

accurate determination of local feature positions in relation to each other.

1Note that the pre-processing discussed in this section does not involve the adjustment of
�ngerprint features in relation to their position, orientation or scale. That process (explained
in section 4.4.6.2) is part of the feature matching technique for veri�cation. The pre-processing
referred to in this section is speci�cally aimed at image enhancement prior to feature extraction.
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• non-uniform contact: dryness, sweat, injury, grease, dirt, and humidity all

a�ect the contact between �nger and scanner. As a result, the possibility

of missing data and/or introduced artifacts from a poor quality image is ever

present, and will vary depending on the extent to which these conditions exist.

• noise: applies to sensor noise as well as residue left on the scanner surface

from a previous scan. Variability in sensor noise is a result of electromagnetic

interference. Whilst scanners (and extraction software) attempt to compensate

for this, they are successful to varying degrees. In relation to residue, the

variability will depend on how often (and well) the scanner surface is cleaned

between successive scans.

• feature extraction errors: depending on the quality of the �ngerprint image,

the feature extraction process may introduce non-genuine features or may be

unable to detect some genuine features. The other points mentioned above

may also a�ect the accuracy of the extraction process.

Because of the above factors, and because the successive stages of an AFIS (fea-

ture extraction and matching) are reliant on quality data being obtained from the

image, pre-processing is an important stage. Low quality images may produce er-

roneous output from the feature extraction stage, which will subsequently a�ect

accuracy at the matching stage. So, the major task of pre-processing is the im-

provement of the quality of the image, so that the �ngerprint features may be more

accurately determined.

Some of the pre-processing techniques developed to improve the quality of an

image are:

• Local Ridge Orientation Field Estimation (sometimes referred to as directional

�eld estimation). This process refers to a representation that uses a line seg-

ment to indicate the average direction of �ngerprint ridges in a localised area.

The calculation is based on the orientation of ridges around each pixel, and

can be further re�ned according to the direction of other ridges in the immedi-

ate vicinity. The size allocated for the local area varies, but is usually greater
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than 1 pixel. Computed for the entire image, the e�ect of the line segments

for all local areas provides a representation that is indicative of the class that

the �ngerprint may be allocated to (refer Figure 4.5).

Figure 4.5: Captured Fingerprint (a) And Its Orientation Field (b)
The image was sourced from Yager and Amin (2004b).

• Local Ridge Frequency Estimation. The inverse of the number of ridges (per

unit length) along an imaginary line segment, at right angles to the local ridge

orientation at coordinate x/y.

• Segmentation. The separation of foreground �ngerprint area from the image

background. This is useful because it helps avoid extraction of features in

noisy areas of the �ngerprint and background.

• Enhancement. Contextual �ltering techniques aimed at improving poor qual-

ity areas in �ngerprint images. As �ngerprints consist of ridges and furrows

with determinate frequency and orientation, known frequency analysis tech-

niques are often used to enhance ridge information. Some of the techniques

used are fourier transforms, gabor �lters, wavelets, histogram equalisation,

and laplacian �ltering (Yager and Amin, 2004b).

4.4.4 Feature Extraction

Feature extraction involves the collection of information from a grey-scale �ngerprint

image that can be used by classi�cation and veri�cation techniques. As discussed in
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section 4.3, classi�cation and veri�cation have a di�erent purpose based on global

and local features respectively. Consequently, the feature extraction processes may

di�er for classi�cation and veri�cation. However, as both processes revolve primarily

around ridge characteristics, some common techniques may be utilised for both.

As the focus of this study is on �ngerprint veri�cation, speci�cally minutiae-based

matching techniques (refer section 4.4.6), this discussion will concentrate primarily

on feature extraction processes for minutiae-based matching. That is, the feature

extraction techniques speci�cally associated with determining minutiae (and their

attributes) from a grey-scale �ngerprint image.

There are two main approaches adopted for determining minutiae locations and

their attributes:

• Minutiae extraction from a skeletal representation of the �ngerprint.

To achieve identi�cation of genuine minutiae (and extract their attributes),

image noise needs to be nulli�ed or at the very least reduced. This approach

typically consists of the following four processing steps:

1. Local Ridge Orientation Field Estimation. A description of this technique

was provided in the previous section 4.4.3.

2. Ridge Detection (often referred to as binarisation). This task is achieved

by utilising the intensity values of grey-scale levels in the captured im-

age, with the purpose of returning a black and white image consisting of

only binary values. Notably, the maximum intensity value in a grey-scale

�ngerprint image is achieved along the direction of a ridge; the values

gradually decrease to the lowest intensity value, indicating a furrow. As

grey-scale representation typically uses 8-bits for storage of the captured

pixel values, these pixel values have a possible range of 0 (black) to 255

(white). Those pixels having the highest intensity values should theo-

retically indicate the line or direction of the top of a ridge; those pixels

having the lowest intensity values should theoretically indicate the line

or direction of a furrow. For the ridge detection process, thresholding is

used to convert the grey-scale representation to a binary representation.



4.4. AUTOMATED FINGERPRINT IDENTIFICATION SYSTEMS 181

If a grey-scale value is below the threshold, that pixel is allocated the

binary value 0; if a grey-scale value is above the threshold, that pixel is

allocated the binary value 1�(refer Figure 4.6, image (b)).

3. Ridge Map Thinning. This process reduces the width of each ridge to one

pixel. The output from the previous process (binarisation), has the ridges

mapped according to the grey-scale captured image, but represented by

binary values of 0 and 1. As ridges with values of 0 are very likely to be

more than one pixel wide, the ridge representation needs to be `thinned'

to facilitate identifying and extracting the minutia points. This process

should ensure that connectivity of ridge bifurcations is maintained, whilst

reducing the width of the ridges.

An example of a `thinned' or `skeletal' representation of a binarised im-

age is provided in Figure 4.6, image (c). Very often, post-processing is

required to remove spurious artifacts resulting from the binarisation and

thinning processes.

Figure 4.6: Captured Fingerprint (a), Binary (b) and Thinned Representations (c)
The image was sourced from Maio and Maltoni (1997).

4. Minutiae Template. This process involves the detection and extraction

of minutiae, and storage of their attributes. From the skeletal mapping,

the process detects discontinuities in the pixel wide ridge lines. Ridge

termination occurs when a skeletal ridge abruptly stops; this occurrence

is detectable because the pixels surrounding the last pixel of the ridge line

are white on all sides but one; the pixel on the ridge preceding the last
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one. Ridge bifurcation occurs at the junction of two skeletal ridge lines;

where one ridge line joins another or when one ridge line separates into

two. The junction point is detectable because the pixel at that location is

not surrounded by white pixels. In fact, there will be black pixels on three

sides; the pixel on the ridge preceding the junction, and two other pixels

in the directions that the bifurcated ridge lines are heading. Extraneous

minutiae will always be present after the detection process, because of

noise in the original image and because of spurious artifacts resulting

from the binarisation and thinning processes. Smoothing algorithms are

used to reduce the erroneous minutiae.

The output from this process is a minutiae template, typically consist-

ing of the x/y coordinates of detected minutiae, and their orientations.

Some extraction algorithms return other information, such as minutia

type, although a number of matching algorithms do not use this extra

information.

• Minutiae extraction from a grey-scale image. In the previous approach, pro-

cessing the �ngerprint image into a skeletal representation occurs before minu-

tiae were identi�ed and extracted. With his approach, ridges (and possibly

furrows) are traced from the original grey-scale image. Minutiae are detected

and recorded where ridges terminate (or furrows join) or separate (furrows

depart). Most techniques use the orientation �eld estimation to help trace

the ridges, and thereafter locate termination and bifurcation points (Maio and

Maltoni, 1997; Jiang et al., 2001).

Matching techniques rely heavily on accurate information obtained from the

�ngerprint image. Thus, accurately identifying and quantifying �ngerprint features

during the feature extraction process is crucial for the matching process. Although

minutiae-based matching is not the only method used for �ngerprint matching, it is

the most prominent. This and other methods are discussed in section 4.4.6.2.
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4.4.5 Fingerprint Classi�cation

Fingerprint classi�cation refers to the assignment of a �ngerprint's ridge pattern

into a de�ned category, based on accepted pre-determined classes. Classi�cation is

necessary because identi�cation requires comparison of a person's �ngerprint with

those stored in a database (or record system), and this made more e�cient by

classi�cation-based searching.

Prior to the electronic age, the FBI held photographic images of �ngerprints

in their record system, but now maintain an electronic database of digital images

for over 200 million persons (Yager and Amin, 2004a). This quantity imposes pro-

hibitive time constraints on processing, when searching for a particular �ngerprint.

By separating �ngerprints into classes, only one subsection (i.e. a single class)

needs to be searched. As long as the classes can be consistently di�erentiated, this

is a more e�cient method than having to search the entire record.

In 1823, Johannes Evangelista Purkinje (1787-1869) published his thesis entitled

�Commentatio de examine physiologico organi visus et systematis cutanei�. He pro-

posed nine �ngerprint classi�cations based on the following basic ridge patterns: the

traverse curve; the central longitudinal stria; the oblique stripe (left); the oblique

stripe (right); the almond; the spiral; the ellipse; the circle; the double whorl (Cum-

mins and Kennedy, 1940).

Galton (1892) proposed only three major classes�the arch; the loop; the whorl�

but recognised Purkinje's other classi�cations as belonging to, or being variations of,

his three major classes. Sir Edward Henry (1900) carried on the work of Galton, but

extended Galton's three major classes into eight classes (these included an accidental

class for those that could not be categorised into the other classes). Variants of

Henry's system of classi�cation are used by law enforcement in most countries today.

Table 4.2 shows the correlation between the classes speci�ed by Purkinje, Galton,

and Henry.
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Purkinje's Classes (1823) Galton Classes (1892) Henry Classes (1900)

Traverse Curve Arch Plain Arch
Central Longitudinal Stria Arch Tented Arch

Oblique Stripe (Left) Loop Left Loop
Oblique Stripe (Right) Loop Right Loop

Almond, Spiral, Ellipse, Circle Whorl Whorl
Double Whorl Whorl Whorl (Twin Loop)

� � Central Pocket
� � Accidental

Table 4.2: Correlation of Early Fingerprint Classes by Purkinje, Galton, and Henry

Figure 4.7 provides a pictorial example of six of the classes speci�ed by Henry2,

where core points are indicated by a red encircled white dot, and delta points are

indicated by a green outlined white triangle. Figure 4.7 was sourced from an image

provided by the Biometric Systems Laboratory (2010)3.

Figure 4.7: Fingerprint Classes de�ned by Henry

Following is a description of the six classes illustrated in Figure 4.7:

1. The Arch is characterised by ridges entering just above the distal phalanx joint

on one side, rising to a small bump as they move toward the middle of the

�nger, and descending (after the apex) to exit on the other side of the �nger

2The central pocket and accidental classes occur so rarely that they are usually not considered
in most classi�cation schemes (Maltoni et al., 2003).

3Available at: http://biolab.csr.unibo.it/ResearchPages/Graphics/FingClass.png
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just above the distal phalanx joint. The arch con�guration does not include

loops and deltas, and therefore does not have a clearly distinguishable core

point. A core point for this class can be hypothetically assumed as the point

of maximum ridge line curvature (Karu and Jain, 1996).

2. The Tented Arch is similar to the arch, except that the ascending and de-

scending ridges protrude higher up the �nger, forming a spire shape with very

steep sides. This usually results in a single ridge (the inner most ridge), a core

point (at the apex of the inner most ridge), and a delta point (at the base of

the inner most ridge where it bifurcates into two ridges).

3. The Left Loop is characterised by ridges entering just above the distal pha-

lanx joint on the left side, circling nearly 180 degrees around the approximate

centre, to exit on the left side above where they entered. The left loop pat-

tern includes a core point (central to the loop) and a delta point where ridges

converge toward the loop, below and on the right side of the loop.

4. The Right Loop is characterised by ridges entering just above the distal pha-

lanx joint on the right side, circling nearly 180 degrees around the approximate

centre, to exit on the right side above where they entered. The right loop pat-

tern includes a core point (central to the loop) and a delta point where ridges

converge toward the loop, below and on the left side of the loop.

5. The Whorl is characterised by at least one ridge (but often many) forming a

complete circle approximately central to the �ngerprint. The whorl pattern

includes a core point (central to the whorl). It also contains two delta points

where ridges converge toward the whorl, below and on either side of the whorl.

6. The Whorl (Twin Loop) is characterised by two loops. One similar to a left or

right loop, and the other similar to its opposite inverted loop so that they �t

side by side. The twin loop pattern includes two core points (one central to

each loop), and two delta points where the ridges converge toward the loops,

below and on either side of the combined loops.
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It may be tempting to assume that the �ngerprint classes are evenly distributed

among the human population. However, this is not the case. According to Wil-

son et al. (1993), the approximate percentages, shown in Table 4.3, represent the

proportion of each class in the human population.

CLASS PERCENTAGE

Arch 3.7
Tented Arch 2.9
Left Loop 33.8
Right Loop 31.7
Whorl 27.9

Table 4.3: Proportion of Fingerprint Classes

Note that three of the classes (left loop, right loop, and whorl) make up 93.4%

of the �ngerprint classi�cations. Note also, that only �ve of the Henry classes are

represented in Table 4.3. As previously stated, the central pocket and accidentals

occur so rarely that they are generally not considered in most classi�cation schemes;

twin loops also fall into this category.

Even though partitioning �ngerprints into de�nable classes has the advantage

of minimising search space, there are challenges that make the classi�cation task

complex and di�cult (Yager and Amin, 2004a):

1. As demonstrated in Table 4.3, three of the classes make up 93.4% of the

�ngerprint classi�cations in the general populace. This means that though

the search space is reduced, it is reduced by only two thirds; which is still

a substantial search space in a record system the size of the one that the

FBI maintains. This makes one-to-one �ngerprint comparison particularly

challenging, because di�erentiation between two individual �ngerprints still

makes for a very exhaustive search based on these three classes. However,

classi�cation before attempting veri�cation does provide some advantage.

2. Often extensive pre-processing is required to improve and enhance the quality

of the original �ngerprint image, in order to attain a true representation of the

ridge patterns; and therefore allow for assignment into the correct class.

3. There is wide variability in the size and shape of patterns within each class.
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4. Patterns from one class can sometimes very closely resemble the pattern from

another. For example, the arch and tented arch are closely related and a poor

�ngerprint image could lead to an inconclusive or erroneous classi�cation.

5. It is possible for a �ngerprint to have characteristics of more than one class.

4.4.5.1 Feature Extraction For Classi�cation

Feature extraction for classi�cation purposes involves the collection of information

from input data that can be used to determine correct class membership.

Classi�cation of �ngerprints is based on global features, and so it is appropriate

to utilise ridge information for this purpose. The four main methods for representing

ridge information are (Yager and Amin, 2004a):

1. Ridge Features. Extracting useful information from �ngerprint ridges depends

on how ridge data is inspected. One common approach makes use of frequency

analysis techniques (such as fourier transform and gabor �lters) to extract fre-

quency and orientation components. Another approach is to represent infor-

mation about the ridge structure. This approach makes use of mathematical

modeling methods such as geometric framework and hierarchical kernal �tting,

as well as methods such as fudicial lines and ridge recurrence.

2. Local Ridge Orientation Field Estimation. A description of this technique was

provided in section 4.4.3. Note that orientation �eld estimation is often useful

for singularity detection (see next point).

3. Singularities occur in locally de�ned regions where special properties of the

ridge pattern are clearly apparent. These were �rst recognised and described

by Sir Edward Henry, and named core and delta points (Henry, 1900). As

described in section 4.3.1, a core point is typically the point of maximum

ridge line curvature, being the turning point around the inner-most ridge. A

delta point (being formed in one of two ways) is the location where two ridge

lines diverge in opposite directions from their source (either a bifurcation or

two ridges running side by side). The most common method for detecting
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singularities is the poincare index, which makes use of the orientation �eld

estimation. By rotating the vectors along a curve in the orientation �eld, all

points can be classi�ed as core, delta, or normal points by inspecting their

allocated poincare index (Maltoni et al., 2003).

4. Structural Features represent the correlation between structural elements of

the �ngerprint. One approach is to dissect the orientation �eld into regions

where vectors (in each region) have similar orientation (Cappelli et al., 1999).

Each region is represented by a node of a graph (labeled for their region), and

adjoining regions are connected by an edge (labeled with di�erence information

between the regions). Another approach attempts to extract shape information

about ridges according to 10 de�ned basic patterns (Chang and Fan, 2002).

A combination of these patterns (plain ridge, arch ridge, triangle ridge, left

loop ridge, right loop ridge, circle ridge, whorl ridge, smile ridge, balloon ridge,

double-loop ridge) are said to occur in all �ngerprints.

All methods mentioned above can be used by the appropriate classi�cation tech-

niques as discussed in the next section 4.4.5.2.

4.4.5.2 Classi�cation Techniques

As the techniques used to extract �ngerprint features for classi�cation purposes vary

according to the methods for representing ridge information, so the techniques used

to classify �ngerprint features vary according to the information extracted. The

following are some of the techniques used on the information extracted, as described

in the previous section 4.4.5.1:

• Structural Approach. This approach classi�es �ngerprints based on the rela-

tionship between low-level structural features extracted as described in section

4.4.5.1. In syntactic recognition, a language is developed (composed of a se-

quence of primitives) that expresses the features of the �ngerprint classes.

Each class has its own sequence of primitives that describes its characteris-

tics. Matching is performed by comparing a given input with the language



4.4. AUTOMATED FINGERPRINT IDENTIFICATION SYSTEMS 189

syntax. For example, Chang and Fan (2002) developed their language syntax

based the 10 patterns mentioned in section 4.4.5.1. Another approach uses

graph mapping algorithms to determine the probability that two graphs have

the same intrinsic structure. By modeling the �ngerprint classes to a typical

structure, a graph matching approach can be facilitated. For example, Cap-

pelli et al., (1999) used the method described in section 4.4.5.1 to extract and

describe �ve of the �ngerprint classes (arch, tented arch, left loop, right loop,

and whorl).

• Heuristic (or ruled-based) Approach. This approach makes use of human ex-

pert knowledge to formulate heuristic rules. They are typically based on the

occurrence of singularities, global ridge structures, or both. According to

Zhang et al., (2001) the possible combination of core and delta points for the

six major classes are as shown in Table 4.4. This facilitates the de�nition of

heuristic rules that can be used for classi�cation. The information extracted

about ridge features discussed in section 4.4.5.1 can also be used to de�ne

heuristic rules for classi�cation. Also, because the information from either of

these approaches can be utilised as a basis for heuristic classi�cation, it is rea-

sonable to suggest that both could be used in combination to formulate more

comprehensive heuristic rules.

Pattern Class Number of Core Points Number of Delta Points

Arch 0 0
Tented Arch 1 1 (Middle)
Left Loop 1 1 (Right)
Right Loop 1 1 (Left)
Whorl 1 2

Whorl (Double Loop) 2 2

Table 4.4: Fingerprint Classes and Their Singular Points

• Neural Approach. Since 1990, neural networks have been increasingly used for

�ngerprint classi�cation, and this is now a commonly used approach (Yager

and Amin, 2004a). Various Arti�cial Neural Network architectures, such as the

Multi-Layer Perceptron (MLP); the Self Organised Map (SOM) (or Kohonen

network); and the Probability Neural Network (PNN), have been utilised.
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Some of the features used in the classi�cation process, by the di�erent research

e�orts, include singularities, orientation �elds (with reduced dimensionality),

wavelet coe�cients, and the FingerCode technique developed by Jain et al.,

(1999b).

• Other Approaches. One approach is to use a hybrid classi�er, such as a fuzzy

neural network. Such a classi�er utilises the advantages of neural networks

and fuzzy logic techniques. Here, a neural network�through its learning

algorithm�generates fuzzy logic rules during the training phase.

The fuzzy rules incorporate explicit knowledge (in this case learned knowledge

by the neural network), and uses high level reasoning to classify the input.

Other approaches use support vector machines (SVMs) and hidden markov

models (HMMs).

This section has provided an overview of �ngerprint classi�cation, and some of

the techniques used. An in-depth review of the research e�orts for the classi�cation

problem has not been provided, as the major focus of this study is the veri�cation

problem. For an adequate review of the classi�cation research problem the reader

is directed to that presented by Yager and Amin (2004a).

4.4.6 Fingerprint Veri�cation

Fingerprint veri�cation involves the comparison of two �ngerprint samples. Thus,

it is a one-to-one comparison, as opposed to classi�cation which is a one-to-N com-

parison (where N is the number of �ngerprint samples in the record or database).

Therefore, classi�cation can be thought of as a one-to-one comparison (or veri�ca-

tion) performed N number of times.

Prior to computerised techniques, veri�cation was performed manually by trained

�ngerprint experts. The most common method was to compare the relative positions

of minutiae (which form a unique con�guration or pattern) from two �ngerprint

samples; this is essentially a pattern recognition task.
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The skills involving the interpretation and critical analysis of such patterns are

developed by human beings from experience. As with many tasks originally per-

formed by human beings, developing acceptably accurate and robust automated

computerised techniques is very complicated, and often intractable.

Computer programs can only do what they are programmed to do, and can

only deal with the data provided to them; they do not have the inherent ability to

gain knowledge from experience or interpret information. It is because �ngerprint

recognition is such a complex task that the automated systems developed to this

point in time are still lacking in accuracy, robustness, and completeness (Yager and

Amin, 2004b).

For veri�cation purposes, one sample is the genuine sample obtained during

enrollment. This sample is the one upon which comparison is based, and is very

often referred to as the `registered' or `reference' sample. The other sample is the

claimant's sample obtained at the time of attempted authentication, and is often

referred to as the `query' or `input' or `test' sample.

The veri�cation process attempts to match a query sample with the registered

sample, and indicates the probability that the query sample is a match for the regis-

tered sample. That is, the two samples are either con�rmed or denied as belonging

to the same individual.

In biometric systems, enrollment typically involves the collection of more than

one sample to be registered for veri�cation purposes. This is because biometric

samples�of the same characteristic collected at di�erent times�rarely match per-

fectly. So there is a need to collect multiple samples upon which to base comparison.

Samples of the same characteristic, from the same individual, collected during en-

rollment are used to formulate a registered `template', which is intended to re�ect

the true components of a `representative' sample (for that characteristic for that

individual).
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4.4.6.1 Feature Extraction For Veri�cation

The methods for extracting feature information for veri�cation purposes, were dis-

cussed in section 4.4.4. The point was made that minutiae-based matching is the

most prominent approach used for veri�cation. Also, a discussion of the two main

approaches used to extract minutiae for the purpose of veri�cation�extraction from

a skeletal representation of the �ngerprint and extraction from a grey-scale image

of the �ngerprint�was presented. Both approaches typically apply some form of

post-processing to �lter erroneously detected features. However, further validation

of the extracted features is often applied in an e�ort to con�rm correct detection.

Heuristic rules and Arti�cial Neural Networks are sometimes used for this purpose.

The extraction approaches discussed have the following disadvantages (Yager

and Amin, 2004b):

• They are computationally expensive because of the binarisation and thinning

stages.

• They are unreliable for low quality images because of loss of data due to

binarisation and thinning.

• They are vulnerable to the inherent property of non-linear distortion during

the capture process.

As a result of these disadvantages, some of the other non-minutiae feature extrac-

tion methods attempted are wavelets, gabor �lters, image veri�cation, and optical

processing (Yager and Amin, 2004b). On their own, these approaches vary in suc-

cess, but can be, and sometimes are, applied to supplement the other more trusted

approaches in order to mitigate the disadvantages listed above.

4.4.6.2 Veri�cation Techniques

As a direct consequence of the �ngerprint representation (section 4.4.2), there are

two extensive strategies adopted for veri�cation. One strategy is to directly com-

pare the grey-scale images of two �ngerprints; using image matching techniques.
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The other is to compare previously extracted features from the two �ngerprint im-

ages; using feature matching techniques.

The many techniques employed for �ngerprint veri�cation can be divided into

three broad categories (Maltoni et al., 2003):

1. Correlation-based matching is an image matching technique. It can be envis-

aged as overlaying the registered �ngerprint image with the query �ngerprint

image, to determine the correlation between corresponding pixels under a�ne

transformations (translation and rotation).

2. Minutiae-based matching is a feature matching technique. It is the most widely

used technique, and the basis for �ngerprint examination performed by �nger-

print examiners. Minutiae are extracted from the two �ngerprint images and

stored as two separate sets of coordinates in a 2-D plane.

The matching process involves determining the alignment which returns the

maximum number of minutiae correspondences or pairings, when the two dis-

tributions of coordinate points are compared in various alignments.

3. Ridge feature-based matching is a feature matching technique. It involves

the comparison of features extracted from the ridge patterns (not minutiae)

of the two �ngerprints under examination. This approach is more applicable

to situations where the �ngerprint images are of low quality, thus making

the accurate extraction of minutiae (for minutiae-based matching) and pixels

values (for correlation-based matching) problematic.

For the techniques that utilise extracted features for veri�cation, accurate in-

formation from the previous stages of an AFIS (acquisition, representation, pre-

processing, and minutiae extraction) is vitally important. Also of importance, are

the common steps required by these feature matching techniques:

1. Alignment Stage. The �ngerprint feature sets under comparison need to be in

alignment; or at least in the best possible alignment. This stage involves the

determination of transformation factors that best aligns the two feature sets.

The transformation factors are then used in the matching stage.
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2. Matching Stage:

• Matching Process. This refers to the actual processing method applied

to match the aligned feature sets. Depending on the method applied, ad-

ditional information (from the feature extraction stage) may be utilised.

• Matching Score. The process of determining the matching score based

on the matching process. This typically involves the accumulation of the

number of corresponding minutiae pairs.

• Veri�cation. The decision analysis method applied to determine veri�ca-

tion, based on the matching score. That is, given the matching score, are

the two feature sets similar enough to be considered as belonging to the

same �ngerprint?

A brief overview of some extracted feature techniques is presented below (Yager

and Amin, 2004b):

• Minutiae pattern matching. This is another term for minutiae-based matching,

and is achieved by locating pairs of corresponding minutiae between the regis-

tered and query feature sets. Matching can be visualised as super-imposing the

feature set of the query sample over the feature set of the registered sample.

When locating correspondences, it is typical to de�ne a small region�called a

bounding box�around each minutia in the registered feature set. This allows

for correspondences to be made in the presence of non-exact minutia positions

(in the query feature set), due to non-linear distortion that is an inherent prop-

erty of the �ngerprint capture process. A matching score is then calculated

from the total of minutiae that are coincident in both feature sets (Yager and

Amin, 2004b). A normalised matching score calculation was proposed by Jain

et al., (1996). The score indicated the likelihood that the two feature sets

belonged to the same �nger.

A very similar approach involves comparing neighbourhoods of nearby minu-

tiae (i.e. 3 or more in close proximity) for similarity (O'Gorman, 1998). Each
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minutia is a certain distance and orientation in relation to others in its neigh-

bourhood. Each neighbourhood in the query �ngerprint is compared with

those in the registered �ngerprint. If comparison indicates only a minor di�er-

ence between speci�c neighourhoods from both samples, then these are said to

possibly match. An exhaustive comparison is then performed for all neighour-

hoods from both samples, and if enough similarities are found, the �ngerprints

are said to match. The degree to which variance is permitted is determined

by a user-de�ned threshold. This process has much in common with graph

matching in mathematics.

• Structural matching. As the name suggests, these methods use structural

information to denote relationships between the low-level features of two �n-

gerprints under comparison. These approaches use local structures to per-

form initial alignment, and then global features to improve that alignment;

a matching score is then calculable. One strategy is to use graph match-

ing algorithms on topological representations (nodes and edges) of the ridge

structure where a minutia is detected; ridge termination has a di�erent topo-

logical representation than ridge bifurcation. Another strategy is to use the

topological con�guration or pattern associated with minutiae locations. This

is typically calculated for each minutia, where the number of other minutiae

within a nominated radius are identi�ed and information about each�type,

orientation, relative distance�is used to form the topological mapping. The

overall topology of the two �ngerprints are then compared and a matching

score determined.

• Incorporating supplementary �ngerprint information. A number of techniques

utilise or represent �ngerprint information other than minutiae location. These

have been developed because of the complexity and computational expense of

feature alignment. One approach is to extract the shape and location of ridges

associated with extracted minutiae. This information can be used to achieve a

course alignment between two feature sets. The locations of minutiae are then

used to formulate a `string' representation which is used for string comparison.
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A matching score is then determined based on the results of the comparison.

Another approach constructs a rotation and translation invariant key between

triplets of minutiae. Features used for the key are distance and ridge count

between minutiae pairs, and orientation angles. Still another approach is to

use core points to determine the translation factors for course alignment, then

use structural features to determine the rotational factor.

• Modeling �ngerprint distortion. As it is known that the elasticity of the epider-

mal layer causes non-linear distortion of captured �ngerprint images (at least

to some degree), the resultant feature extraction and registration processes are

a�ected. This means that completely accurate alignment of �ngerprint features

(of the same �nger) is highly problematic (if at all possible to achieve); errors

can only be minimised. Some matching techniques attempt to overcome this

degree of uncertainty by modeling �ngerprint distortion. A common technique

is to use bounding boxes to compensate for location di�erences between pos-

sible matching minutia. If the modeling is performed after registration, the

size of the bounding boxes can be reduced and a higher degree of accuracy

achieved.

• Alternate matching techniques. These are techniques that utilise machine

learning (such as ANNs or fuzzy neural networks) or statistical pattern recog-

nition approaches. It may also include methods that attempt to use non-

minutiae information.

Most research e�orts involving feature matching utilise minutiae-based matching

techniques. As this is the most prominent approach, the next section 4.5 reviews

the research e�orts undertaken in this particular �eld.

4.5 Minutiae-based Matching Related Research

Research in the �eld of �ngerprint recognition has been plentiful because of the

varied nature of the subject, the applications to which it may be applied, and the

complex nature of the tasks involved (Jain et al., 1997). As discussed in section

4.4, there are �ve stages of an AFIS and each stage has seen increased research
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e�orts in the last two decades. The aim of these research e�orts is to gain further

knowledge in the respective stages, and to discover improved solutions to overcome,

or compensate for, the complex tasks (some of which are intractable in nature).

This review will focus on �ngerprint matching; the last stage of an AFIS. How-

ever, because of the breadth of research in this �eld, and to keep the review more rel-

evant to the current study, it will concentrate on research e�orts involving minutiae-

based matching4. Studies that have used Arti�cial Neural Networks for minutiae-

based matching will be discussed where possible.

The research �ndings and methodological issues relating to the experiments in-

volving minutiae-based matching, as conducted by the authors of the papers re-

viewed, are summarised in Table 4.55. As well a being useful as a quick reference

for the following discussion, the information in Table 4.5 will be used in Chapter 7

to compare results achieved in the current study with those of previous research.

In early research, veri�cation via minutiae-based matching was achieved by �nd-

ing pairs of corresponding minutiae (that is, minutiae coincident in both the query

sample and the registered sample) and calculating a matching score (Ratha et al.,

1996). This involved an alignment process aimed at �nding transformation factors

that best aligned a query feature set with the registered feature set. Then after ap-

plying these transformation factors to the query feature set, a matching process was

performed. This process aimed to determine the number of corresponding minutia

pairs in both feature sets.

A common task of the alignment process is to determine a minutia common to

both query and registered feature sets, upon which to base the alignment of both

sets. The corresponding pair of minutia thus determined are generally termed the

reference minutiae (one in the query feature set and one in the registered feature

set).

4It should be noted that the review is by no means a comprehensive coverage of all work done
in this area. Rather the research e�orts reviewed here were chosen to provide an overview of the
techniques developed in this �eld, and to provide �gures with which to compare the results from
the current experiment.

5Although some authors expressed the performance variables (FAR and FRR) as a percentage,
columns 8 and 9 denote the actual rates (i.e. the percentage divided by 100). During the discussion,
the performance variables will be presented as both the actual rates and their corresponding
percentages (in parenthesis).
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For this purpose, Jain et al., (1997) proposed�in their seminal paper�the use of

planar curve segments for the alignment process. Firstly, each minutia was denoted

by three attributes; the x and y coordinates, and the orientation. Also information

about the ridge associated with each minutia was obtained from the feature extrac-

tion process. This information was a one-dimensional discrete signal normalised by

the average inter-ridge distance; essentially providing a normalised ridge length.

A curve segment represented a ridge originating at the coordinates of a minutia;

the ridge was further de�ned by the orientation and associated ridge information.

The idea was to determine transformation factors that would align a ridge from the

query feature set with a corresponding ridge in the registered feature set.

Applying the transformation factors to all points in the query feature set, would

then bring both feature sets into alignment (if indeed the two feature sets were from

the same �nger).

The set of ridges associated with the query feature set were denoted by Rd and

the set of ridges associated with the registered feature set were denoted by RD.

For each d ∈ Rd matched against each D ∈ RD, a similarity score was calculated

according to Equation 4.1:

S =

∑L
i=0 diDi√∑L
i=0 d

2
iD

2
i

(4.1)

where L was the number sampling points along the ridge with the smallest mag-

nitude, and di and Di were the distances from sampling point i on the respective

ridges d and D to the x axis. The sampling interval for i along the ridges, was the

average inter-ridge distance. Given (0 ≤ S ≤ 1) and a threshold Tr, if S > Tr,

candidate reference ridges (and thus minutia) are identi�ed. In this case, continue

processing; otherwise select the next pair of ridges.

For the candidate ridges, translation factors were determined such that the po-

tential reference minutia of the query ridge curve and the registered ridge curve

coincided. Then using the orientation and associated ridge information, the rota-

tion factor required to fully align the two ridge curves was determined. Note that

the scaling factor was assumed to be 1. Then all points in the query feature set were

transformed according to the determined transformation factors.



200 CHAPTER 4. FINGERPRINT RECOGNITION

For the matching process in general, if two feature sets are exactly aligned, then

�nding the correspondences is simply a matter of counting the coincident pairs.

However because of non-linear distortion6 and other issues associated with the cap-

ture process7, exact alignment of corresponding minutiae rarely (if ever) occurs.

Therefore, it is common practice to utilise a bounding box when determining

correspondences. A bounding box is calculated as a small region surrounding each

minutiae of the registered feature set, which allows correspondences (between the

query and registered feature sets) to be determined in the presence of inexact minu-

tiae locations. Jain et al., (1997) used an `elastic' bounding box when determining

correspondences.

For their matching process, Jain et al., (1997) converted the attributes of each

minutiae�in both feature sets�to the polar coordinate system with respect to

the respective reference minutia. The transformation factors were calculated for

each minutia (xi, yi, θi) in relation to the reference minutia (xr, yr, θr) according to

Equations 4.2, 4.3, and 4.4:

ri =
√

(xi − xr)2 + (yi − yr)2 (4.2)

ei = tan−1[(yi − yr)/(xi − xr)] (4.3)

θi = θi − θr (4.4)

where ri was the resultant radial distance, ei was the resultant radial angle, and

θi was the resultant orientation with respect to the reference minutia.

The polar attributes for all minutiae were concatenated (in ascending order ac-

cording to the radial angle) to form a vector of symbolic strings; one symbolic string

for each feature set.

6Because of the elasticity of the epidermal layer of the �nger, non-linear distortion of a feature
pattern (in relation to the true feature pattern) is typically caused by di�ering pressure applied by
the applicant during the capture process.

7Because of the di�ering quality of scanning devices and varying environmental conditions,
missing or erroneous artifacts are typically introduced.



4.5. MINUTIAE-BASED MATCHING RELATED RESEARCH 201

A dynamic string matching algorithm was then used for the matching process.

String matching can be thought of as the maximisation/minimisation of a cost func-

tion. The edit distance is a minimising cost function that indicates the cost of

equalising two strings. The closer the two strings are to being a match, the lower

the edit distance. Jain et al. (1997) incorporated an elastic term (by formulat-

ing a bounding box) into the edit distance calculation, to tolerate inexact minutia

positions. Thus minutia pair correspondences were determined.

Jain et al. (1997) proposed a normalised matching score, calculated according

to Equation 4.5:

M = 100x
Npair

max{R,Q}
(4.5)

whereM is the normalised matching score, Npair is the number of corresponding

minutia pairs, R is the number of minutiae in the registered feature set, Q is the

number of minutiae in a query feature set, and max is the function to determine

the larger of R and Q. Note that values of the matching score range from 100 (for

a perfect score) to 1 (for no match at all)8.

Veri�cation was performed by testing each �ngerprint sample against all other

samples. There were 2 data sets used in the experiment:

1. Samples collected by an Identix scanner consisted of 180 �ngerprint samples;

10 samples of the same �nger from each of 18 individuals. This permitted

32,220 (179 x 180) tests.

2. Samples collected by a Digital Biometrics scanner consisted of 610 �ngerprint

samples; 10 samples of the same �nger from each of 61 individuals. This

permitted 371,490 (609 x 610) tests.

The decision to accept a query sample as a match to another sample�or to reject

it as non-match to another sample�was based on the matching score calculated for

the two samples (refer Equation 4.5). Theoretically, a query sample should only

8The possibility of at least 1 match exists because the reference minutia from both feature sets
must coincide.
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match a sample from among the other nine samples provided by the same individual.

Otherwise, it should not match another sample.

The matching score of the two samples was compared to a threshold. If the

matching score was above a certain threshold, the query sample was said to match

the registered sample, and the match was labeled `correct'. Otherwise it was labeled

`incorrect'.

The performance metrics used were the veri�cation rate and the reject rate. The

authors did not de�ne how the veri�cation rate was calculated.

They de�ned the reject rate as the percentage of �ngerprints that tested incor-

rect, when they were in fact correct (i.e. they did belong to the same individual,

but did not match when tested).

Though not clearly stated, if it is assumed that the number of rejected samples

was divided by the total number tested for a correct match, then the reject rate is

equivalent to the commonly used performance variable the false rejection rate (FRR),

except that the reject rate was multiplied by 100 to express it as a percentage. It is

assumed that this was the case.

With a threshold value of 25, the authors reported a veri�cation rate of 100%

and a reject rate of approximately 0.16 (16%) for both data sets. To ensure that

the rates were based on the query sample matching a template, rather than just one

other sample, it had to match �ve or more of the other nine samples provided by

the same individual before being accepted as a valid match.

There were some issues with this work that are noted:

• The threshold in relation to the possible perfect matching score, was quite low;

that is, 25 out of a possible 100.

• There was no attempt to record false positives to attain a false acceptance rate

(FAR)9.

• For each participants, only 10 samples were available for testing a correct

match. A rejection of such a test was recorded by the reject rate. This results

in course granularity for the FRR performance variable.

9In some literature, the false acceptance rate (FAR) is referred to as the false match rate (FMR),
and the false rejection rate (FRR) as the false non-match rate (FNMR).
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Luo et al., (2000) introduced modi�ed methods of those proposed by Jain et

al., (1997). Firstly, the authors used four minutia attributes�the x and y coordi-

nates, type and the orientation�as well as associated ridge information. Informa-

tion recorded about the associated ridge was di�erent to that used by Jain et al.,

(1997). Here, the representation was a sampling of points�at the average inter-ridge

distance�along the ridge associated with the minutia.

For the alignment process, a minutia was chosen in both the registered and query

feature sets. If the points achieved a certain degree of similarity by comparing their

respective ridge curves, they were nominated as the reference minutiae (one from

each feature set) for the alignment process.

This comparison of ridge curves was achieved by calculating a distance di�erence

and an angle di�erence. The distance di�erence was a ratio of the sum of the

distances of imaginary line segments (extending from the minutia associated with

the curve and the sampling points mentioned previously) divided by the number of

sampling points. The angle di�erence was a ratio of the sum of the angles, between

the imaginary line segments and the orientation of the associated minutia, divided

by the number of sampling points.

If the distance or angle di�erences were greater than a nominated threshold,

that particular alignment was discarded. Otherwise, the transformation angle was

calculated between the orientation upon which the reference minutia in the registered

feature set was located, and the orientation upon which reference minutia in the

query feature set was located.

Like Jain et al., (1997), matching was achieved using the polar coordinates of

minutiae attributes in both registered and query feature sets, to form symbolic

strings. That is, each feature set was represented as a vector where each element

consisted of the polar coordinates of each feature in the feature set.

The polar coordinates of the query feature set were applied to the registered

feature set, utilising an adjustable bounding boxes (surrounding each minutia in

the registered feature set), to determine minutiae correspondences. If comparison

indicated that the minutia fell within the adjustable bounding box and the ori-
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entation di�erence between the ridge curves met a certain threshold, a minutia

correspondence was registered by incrementing a matching score. This resulted in

an accumulated number of corresponding minutiae pairs.

For the experiment, 100 individuals provided 10 sample �ngerprints each (of the

same �nger), giving a total of 1,000 samples. Again, two samples were considered a

match if the matching score exceeded a nominated threshold.

A registered template consisted of 10 samples from the same individual. There-

fore, there were 100 registered templates; one for each individual. Every sample was

tested against its own registered template (the nine other samples from the same

individual), and the other 99 templates. For a sample to be considered a match to

its registered template, it only needed to match one other sample in that template.

If a sample did match its registered template, then a correct veri�cation (i.e. a

true positive) occurred; this incremented the `correct_num' variable. If a sample did

not match its registered template, a rejection (i.e. a false negative) occurred; this

incremented the `reject_num' variable. If a sample did match a di�erent registered

template�other than its own�a false veri�cation (i.e. a false positive) occurred;

this incremented the `false_num' variable.

The performance variables used to present the results were the veri�cation rate

and the reject rate, as de�ned by Equations 4.6 and 4.7 respectively.

verification rate = 100x
correct_num

correct_num+ false_num
(4.6)

reject rate = 100x
reject_num

1000
(4.7)

Note that the veri�cation rate, as de�ned by Equation 4.6, is referred to as the

precision rate (or positive prediction value) in classi�cation analysis literature, and

is de�ned by Equation 6.7 in Chapter 6. Also, the reject rate is equivalent to the

commonly used performance variable, the false rejection rate (FRR), expressed as a

percentage.

The experiment reported the `best' results as a veri�cation rate of 100% and a

reject rate of 0.133 (13.3%). Unfortunately, the threshold for these �gures was not
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speci�ed. Other `good' results were also reported, presumably at di�erent thresh-

olds; again these threshold values were not speci�ed. It is noted that the `false_num'

variable was only used in the calculation of the veri�cation rate. It could have been

used to determine the false acceptance rate (FAR)�a commonly used performance

variable�but no result was provided for this variable.

The approach taken by Jiang and Yau (2000), used both local and global struc-

tures of �ngerprints. Local structures rely on relative distances and orientations�

that form speci�c con�gurations�between minutiae in local areas. With this ap-

proach, the best matched local structure alignments provide the correspondences

used for aligning the global structure.

Four minutia attributes�the x and y coordinates, orientation, and type�were

used to denote each minutia. A feature vector for each minutia was denoted as

Fk = (xk, yk, ϕk, tk). The representation of a local structure of three minutiae in

close vicinity�mk, mi, and mj�consisted of the following:

• the relative distances dki and dkj between the minutia mk and the other two

minutiae mi and mj respectively.

• the orientations ϕki and ϕkj, being the di�erences between the orientation of

the ridge upon which mk is located and the orientation of the ridges upon

which mi and mj are respectively located. These were de�ned by a function

dφ(ϕki, ϕkj) = ϕki − ϕkj.

• the radial angles θki and θkj, being the angles between the orientation of the

ridge upon which mk is located and two imaginary line segments joining mk

to mi and mk to mj.

• the ridge counts nki and nkj, being the number of ridges between mk and mi,

and mk and mj.

• the minutia types tk, ti, and tj, being either the ridge termination or bifurcation

of mk, mi, and mj respectively.

This local structure was used to directly match a registered �ngerprint with a

query �ngerprint at the local level. To decide upon a match or non-match, a simi-
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larity score was de�ned�in the continuous domain [0, 1]�to describe the matching

certainty of local structure pairs. A level of 1 was a perfect match, whilst a level of

0 was a non-match.

The `best-matched' local structure�from both registered and query �ngerprints�

served as a reliable correspondence of the two �ngerprints. This determined the

transformation factors required for the local level alignment, and identi�ed the minu-

tia (within both feature sets) to use as reference minutia.

Global alignment was performed based on the application of the local transfor-

mation factors to all minutiae in the query feature set. A 3-D bounding box was

then used, when attempting to match corresponding minutia, to allow for defor-

mations in the feature sets�at the global level�that are an inherent property of

the �ngerprint capture process. The local similarity score was incorporated in the

calculation of the bounding box.

A matching certainty level�which also incorporated the local similarity score�

was de�ned to tolerate �ngerprint deformations, and determined the number of

corresponding minutiae pairs. This matching certainty level was used in the calcu-

lation of a matching score, similar to that de�ned by Jain et al., (1997) (Equation

4.5), except that the matching certainty level was used instead of Npair.

For the experiment, 188 participants provided 8 sample �ngerprints each of the

same �nger, giving a total of 1,504 samples. Therefore when testing false acceptance,

1,503 samples were available. However, only 8 samples were available for testing false

rejection.

The `best' FAR presented in the paper was 0.0 with a FRR of 0.0997 (9.97%).

This was stated as the �ndings at a particular threshold, though the value of that

threshold was not reported. As it is typical to report the lowest value for the FAR,

the above �gures have been included in Table 4.5. There were also number of other

values presented, at di�erent thresholds, for these performance variables; though

again the values of the thresholds were not provided. For example, the FAR of

0.0007 (0.07%), which would generally be considered an acceptable FAR, had an

associated FRR of 0.0123 (1.23%).
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Lee et al., (2002) also used local structures for alignment, but included the use of

normalised distance between minutiae to minimise the e�ects of non-linear distortion

which makes exact point pattern matching di�cult.

To denote each minutia, four attributes were used; the x and y coordinates,

orientation, and type. Also, the ridge frequency in the local region surrounding

each minutia was obtained from the feature extraction process. According to the

authors, this ridge frequency incorporates the measurement of local deformations.

From the collective ridge frequencies, the average ridge frequency for all minutiae in

a �ngerprint sample was calculated.

The average ridge frequency was used in the calculation of the normalised dis-

tance between each minutia pair and the direction or orientation di�erence of the

imaginary line connecting them.

After identifying reference minutia from both the registered and query samples�

upon which to base the local structures for comparison�a nominated radius was

used to surround the reference minutiae. Minutiae in this region (of both sam-

ples) were converted to the polar coordinate system�with respect to their reference

minutia�and used for alignment.

For minutia within this circular region, the di�erence between the normalised dis-

tance of the query feature set polar coordinates and registered feature set polar co-

ordinates was calculated (this calculation incorporated the average ridge frequency).

Also, the di�erence between the radial angles and the directions (orientations) of

both sets of polar coordinates were calculated.

Like Jiang and Yau (2000), an adaptive bounding box was used to decide upon

minutia correspondences. However, the bounding box de�ned by Lee et al., (2002)

incorporating the normalised di�erence measurements described above, rather than

the similarity score used by Jiang and Yau (2000).

The matching score was calculated in a similar manner to Equation 4.5 proposed

by Jain et al., (1997), except that the divisor was given as the number of matched

pairs that the two samples have in common.



208 CHAPTER 4. FINGERPRINT RECOGNITION

For the experiment, 100 participants provided 10 sample �ngerprints each (of

the same �nger) giving a total of 1,000 samples. Therefore when testing, 1 sample

was matched against the other 999 samples; doing this for all 1,000 samples, meant

that 999,000 tests were performed.

Results were presented using the same performance variables as those used by

Luo et al., (2000). The minutiae-based matching algorithm, using the normalised

average distance proposed by the authors, achieved a veri�cation rate of 100% and

a reject rate of 0.121 (12.1%); though no threshold values for these �gures were

speci�ed. Results were also presented in graphical form (via a ROC graph), from

which the FAR 0.0002 (0.02%) and the approximate FRR 0.1666 (16.66%) can be

derived; these �gures have been reported in Table 4.5.

He et al., (2003) based alignment on a similar method to that proposed by Luo

et al., (2000). That is, the use of sampled points from a minutia to points along the

associated ridge. The minutia type was included in the attributes used to denote

each minutia.

However, He et al., (2003) proposed a slightly modi�ed method for minutiae-

based matching. The attributes for all minutiae in both registered and query feature

sets were converted to polar coordinates to form symbolic strings. An adjustable

bounding box was de�ned by setting boundaries for the converted reference feature

set polar coordinate attributes. The polar coordinate attributes of the query feature

set were then applied to adjustable bounding box.

If comparison indicated that a query feature set minutia fell within the bounding

box and the orientation di�erence between the ridge curves met a certain threshold,

then a matching result was recorded. After comparing all matching results, the one

with the largest magnitude was applied to an empirical threshold. If this matching

result met the threshold condition, the �ngerprints were accepted as being from the

same person; otherwise the match was rejected.

For the experiment, the FVC2000 �ngerprint databases�DB1_a, DB2_a, DB3_a,

and DB4_a�were used to test the proposed method of minutiae-based matching.

Receiver Operating Characteristics (ROC) graphs were provided, which allowed for
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the determination of the FAR the FRR for each database; though no precise �gures

were provided by the authors.

The approximate results provided in Table 4.6 are �gures derived from the ROC

graphs presented by the authors. The �gures re�ect the common practice of selecting

an appropriately low FAR, whilst maintaining an acceptable FRR. Of these, the

results achieved for DB2_a have been recorded in Table 4.5, because they achieved

the best �gures with a FAR of approximately 0.0001 and a FRR of approximately

0.045.

Database FAR FRR

DB1_a 0.0001 0.133
DB2_a 0.0001 0.045
DB3_a 0.0001 0.225
DB4_a 0.0001 0.255

Table 4.6: Performance Metrics Experiment by He et al., 2003

Tong et al., (2005) proposed the use of adjacent feature vectors for �ngerprint

feature alignment and minutiae-based matching. The following preliminary infor-

mation was required for the speci�cation of the adjacent feature vector of a minutia

x:

• Let x̄y be an imaginary line segment that indicates the orientation (ϕ) of the

ridge upon which x is located.

• Let four adjacent points z1, z2, z3, z4 be de�ned as equidistant from x, such

that |z1| = |z2| = |z3| = |z4| = AD where AD is a constant.

• Let four angles ∠yxz1 = π
4
, ∠yxz2 = 3π

4
, ∠yxz3 = 5π

4
, and ∠yxz4 = 7π

4

de�ne the directions from minutia x to the four adjacent points z1, z2, z3, z4

respectively.

• Let θ1, θ2, θ3, and θ4 be the orientations (of imaginary line segments parallel

to x̄y) at the four adjacent points z1, z2, z3, z4 respectively.

• Let o1 = θ1 − ϕ, o2 = θ2 − ϕ, o3 = θ3 − ϕ, and o4 = θ4 − ϕ constitute the

four adjacent orientations (with respect to minutia x) at the four adjacent

points z1, z2, z3, z4 respectively. Note, o1, o2, o3, o4 are said to be rotation and

translation invariant.
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• Finally, let n1 = xz1, n2 = xz2, n3 = xz3, n4 = xz4, n5 = z1z4, n6 = z2z3

denote the number of ridges crossing the speci�ed imaginary line segments.

Note, n1, n2, n3, n4, n5, n6 are also said to be rotation and translation invariant.

Given the results of the above calculations, an adjacent feature vector for minutia

x can be speci�ed by Equation 4.8:

Afv(x) = 〈ox1, ox1, ox1, ox1, nx1, nx2, nx3, nx4, nx5, nx6〉 (4.8)

Provided the adjacent feature vector elements are valid for two minutiae x and y,

the unit distance of corresponding feature vector elements for two adjacent feature

vectors can be calculated by Equation 4.9:

UnitDistance(x, y|c) =
|x− y|

c+ |x− y|
∗ valid(x) ∗ valid(y) (4.9)

where c is a constant, and valid is a function determining the validity of the

feature vector elements.

The normalised distance between two vectors Afv(x) and Afv(y) can be deter-

mined by Equation 4.10:

AfvDis(x, y) =

(
4∑
i=1

UnitDistance(oxi, oyi|m) + s ∗
6∑
i=1

UnitDistance(nxi, nyi|k)

)

∗ 10/validNum(x, y)

(4.10)

where m, s, and k are constants; validNum(x, y) is the total number of valid

feature elements in both vectors.

Fingerprint matching constituted a three stage process for all minutiae in feature

sets R and Q:

1. If AfvDis(ri, qi) < Tafv then add (ri, qi) to Spair. Tafv is a threshold value,

and Spair is a list of candidate corresponding matching pairs.
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2. By successively selecting and testing two candidate minutiae pairs from Spair,

determine which two minutiae pairs have the best similarity in terms of relative

distance and direction. Transform feature set Q according to the determined

relative distance and direction.

3. By successively selecting and testing two minutiae pairs�using Euclidean dis-

tance di�erence and direction di�erence�a list of candidate matches Mpair is

assembled. Then by successively selecting two candidate minutiae pairs from

Mpair, and using a similarity level function based on the AfvDis function

(refer Equation 4.10), a matching score can be accumulated. This was nor-

malised by dividing the matching score by the larger�in terms of the quantity

of minutiae�of the two feature sets.

For the experiment, the FVC2000 �ngerprint database�DB1_a, DB2_a, and

DB4_a�was used to test the proposed method of minutiae-based matching. Re-

ceiver Operating Characteristics (ROC) graphs were provided, which allowed for the

determination of the FAR and the FRR for each database; though no precise �gures

were provided by the authors.

The approximate results provided in Table 4.7 are �gures derived from the ROC

graphs presented by the authors. The �gures re�ect the common practice of selecting

an appropriately low FAR, whilst maintaining an acceptable FRR. Of these, the

results achieved for DB2_a have been recorded in Table 4.5, because they achieved

the best �gures with a FAR of approximately 0.00001 and a FRR of approximately

0.07.

Database FAR FRR

DB1_a 0.00001 0.12
DB2_a 0.00001 0.07
DB4_a 0.00001 0.19

Table 4.7: Performance Metrics Experiment by Tong et al., 2005

Qi and Wang (2005) proposed a novel approach to alignment using minutiae

feature vectors. Three minutia attributes were used; the x and y coordinates and

orientation.
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Firstly, given a minutiaMk, three angles θ1, θ2, and θ3 were de�ned�with respect

to l0, the line passing through Mk and parallel to the x axis�such that θ1 = ψk,

θ2 = ψk + 2π
3
, and θ3 = θ2 + 2π

3
, where ψk was the orientation of Mk.

Lines l1, l2, and l3 were drawn at angles θ1, θ2, and θ3�with respect to line

l0 and passing through Mk�respectively. Nk
lm

equally distributed sample points,

at interval τ , were determined along lines lm for (1 ≤ m ≤ 3). Therefore, the

sample pattern consists of lines l1, l2, and l3, at angles θ1, θ2, θ3, and points P k
i,lm

for (1 ≤ i ≤ Nk
lm
, 1 ≤ m ≤ 3).

The relative orientation between Mk and each point P k
i,lm

was calculated accord-

ing to Equation 4.11:

ψki,lm = dφ(ψk, ψ
k
i,lm) (4.11)

where dφ(ψk, ψ
k
i,lm

) denotes the angle di�erence between ψk and ψ
k
i,lm

.

Therefore, the feature vector is calculated according to Equation 4.12:

Fk =
[
{ψki,lm}

Nk
lm

i=1

]3
m=1

(4.12)

A similarity level was then calculated according to Equation 4.13:

S(i, j) =


T−|Fi−Fj |

T
if |Fi − Fj| < T

0 otherwise
(4.13)

where T was a pre-de�ned threshold value. Note, S(i, j) was in the interval

[0, 1], where S(i, j) = 1 denotes a perfect alignment and S(i, j) = 0 denotes total

non-alignment.

The matching process involved the following steps:

1. Using the above procedures, designate the reference minutia pair upon which

to base feature set alignment. This was determined as the best-matched pair

that maximises S(i, j)�that is, the pair with S(i, j) closest to 1.

2. Perform registration by determining the orientation and translation di�erence

between the registered and query reference minutia.



4.5. MINUTIAE-BASED MATCHING RELATED RESEARCH 213

3. Apply restricted bounding box to determine a list of initial corresponding

minutiae pairs. This inevitably identi�ed those pairs with the highest similar-

ity level values.

4. Apply triangular matching to attain true corresponding minutiae pairs. Using

the minutiae pairs in the list of corresponding pairs (determined in point 3),

let 3 corresponding minutiae pairs be considered vertices of two triangles�one

from the registered feature set (4ABC) and one from the query feature set

(4A′
B

′
C

′
). Determine the length di�erence Dφl and the angular di�erence

Dφo between the two triangles.

5. Determine the similarity levels Sl and So between triangles4ABC and4A′
B

′
C

′

according to Equations 4.14 and 4.15.

Sl(4ABC,4A
′
B

′
C

′
) =


Tl−Dφl(4ABC,4A

′
B

′
C

′
)/3

Tl
if Dφl(4ABC,4A

′
B

′
C

′
)

3
< Tl

0 otherwise

(4.14)

So(4ABC,4A
′
B

′
C

′
) =


To−Dφo(4ABC,4A′

B
′
C

′
)/3

To
if Dφo(4ABC,4A′

B
′
C

′
)

3
< To

0 otherwise

(4.15)

6. By applying points 4 and 5 to all registered and query features, determine

Sl(4A1A2A3,4B1B2B3) and So(4A1A2A3,4B1B2B3).

7. If Sl(4A1A2A3,4B1B2B3) < Ts1 and So(4A1A2A3,4B1B2B3) < Ts2�where

Ts1 and Ts2 were pre-de�ned threshold values�the minutiae A1 and B1 are said

to minimise the similarity levels and therefore are considered a corresponding

minutia pair.

8. Using the method proposed by Jain et al., (1997) for calculation of the ori-

entation �eld, orientation block pairing was performed. Denoting (B1, B2) as

the corresponding orientation block pair�B1 from the query �ngerprint and
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B2 from the registered �ngerprint�the similarity level can be calculated using

Equation 4.16:

S(B1, B2) =


T1−Dφ(B1,B2)

T1
if Dφ(B1, B2) < T1

0 otherwise
(4.16)

Matching scores were then computed based on the corresponding minutiae pairs

(Equation 4.17) and the orientation block pairs (Equation 4.18) and in combination

(Equation 4.19):

Mm =

∑
i,j S(i, j)

max{N1, N2}
(4.17)

where (i, j) were successively the corresponding minutiae pairs from the regis-

tered and the query feature sets, S(i, j) was computed by Equation 4.13, N1 and

N2 were the number of minutiae in the overlapping areas of the registered and the

query feature sets.

Mo =

∑
Bi,Bj S(Bi, Bj)

N
(4.18)

where (Bi, Bj) were the corresponding orientation block pairs, N was the number

of overlapping blocks of both �ngerprints, and S(Bi, Bj) was computed by Equation

4.16.

Ms = ωmMm + ωoMo (4.19)

where (ωm, ωo) were weight vectors specifying the weights associated with the

minutiae matching score Mm and the orientation �eld matching score Mo.

For the experiment, the DB_3 database of FVC2002 was used to obtain 800

samples, where 8 samples were collected from 100 di�erent �ngerprints. The results

illustrated that the matching score Ms (incorporating both Mm and Mo) out per-

formed the matching score Mm (i.e. the corresponding minutiae pairs only). This

con�rmed the authors assertions that incorporating both matching scores (including

the triangular alignment method) complements the matching process.
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The authors also compared their methods with other experiments, and demon-

strated by the use of ROC graphs that they achieved better results; though no

precise �gures were provided. For the purpose of comparing results from the cur-

rent study to those achieved by Qi and Wang (2005), approximate values have been

derived from the ROC graph that compared their methods with those of Jiang and

Yau (2000). These were a FAR of 0.0325 (3.25%) and a FRR of 0.0605 (6.05%),

extracted from Figure 4 in the report by Qi and Wang (2005).

One of the issues with point pattern matching algorithms (incorporating align-

ment) considered thus far, is the complex nature of determining a corresponding

minutia pair (from registered and query feature sets) upon which to base align-

ment and matching; that is, the selection of a reference minutia. Because of the

complexities involved, implementation errors may be introduced (Jie et al., 2006).

In section 4.4.5.2, it was explained that core points are often used in classi�cation

techniques because they are relatively simple to detect; if present. Jie et al., (2006)

used core points as a basis for their alignment and matching algorithm. They de�ned

a core point as a point of maximum curvature of the concave ridges, and assumed

that a core point was central to the registered and query �ngerprints. If no actual

core point was detected, then the point of maximum curvature was used.

Using the core point as the centre of a circle (radius rreg and rq for the registered

and query samples respectively), only minutiae within these reference areas (circles)

were used to search for reference minutia. A restriction was that only minutiae

of the same type�ridge termination or bifurcation�were considered for selection

as reference minutia. This approach cut down the requirement to search a large

number of minutiae for the reference minutiae.

For each attempted pairing between minutiae in the registered and query sam-

ples (within their reference areas), a di�erence angle between their orientations was

calculated and stored. Then all minutiae in both samples were converted to the po-

lar coordinate system (with respect to their corresponding reference minutia). After

sorting the radial angles of both the registered and query sets, in ascending order,

the matching process was applied.
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Firstly, a circular bounding region was determined based on the radial distance

for each minutia in the registered coordinate set. If a query minutia fell within the

bounded region of a registered minutia, and the orientation of the query minutia met

a threshold condition in relation to a registered minutia, then a matching score was

incremented for that combination. After attempting all combinations of minutiae

in the reference areas, the largest of the matching scores was applied to a decision

threshold. If the matching score exceeded the threshold, a match was recorded.

For the experiment, 1,100 �ngerprint samples were obtained from 100 di�erent

�ngers; 11 samples of each of the 100 �ngers. Each sample was tested against the

other 10 from the same �nger, for correct acceptance. If a sample was rejected under

such a test, a variable `reject_num' was incremented by one. A sample was also

tested against all other 1,089 samples (1,100 - 11) for false acceptance. If a sample

was accepted under such a test, a variable `accept_num' was incremented by one.

Results were presented as a FAR of 0.00001 (0.001%) and a FRR of 0.001 (0.1%).

No indication of the values used for the decision threshold or the matching threshold

were provided.

According to Leung et al., (1991), Arti�cial Neural Networks (ANNs) enable

solutions to pattern recognition problems where algorithmic methods are too com-

putationally expensive or do not exist at all.

There are four main steps in a pattern recognition system: image registration,

pre-processing, feature extraction, and matching (Leung et al., 1991). The early

research e�orts to use ANNs for �ngerprint recognition, did so primarily for either

the image enhancement or feature extraction processes.

Ozkaya et al., (2006) used ANNs for image enhancement and the cross-number

method for feature extraction. However, the matching process was achieved with

the use of local and global structures. A `matching area' was denoted by a circle of

radius r, which was adjustable in magnitude. Firstly, the core point of a �ngerprint

was determined, and r was set to the distance from the core point to the closest

edge of the scanned �ngerprint area10.

10This was performed for each �ngerprint under consideration.
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By super-imposing a query feature set over the registered feature set (based

on coordinate positions), minutiae were determined such that corresponding pairs

were identi�ed AND the pairs were located in the overlapping matching areas of

both feature sets. By selecting one of these pairs, a sum of similarity scores was

calculated for the current group of corresponding pairs. This was performed for all

possible combinations in the current group of corresponding pairs.

The maximum similarity score (from the above process) was compared to a

threshold value to decide if both �ngerprints were from the same individual. The

method used to calculate the similarity scores was not de�ned by the authors.

For the experiment, 100 �ngerprint samples were provided by 20 individuals.

Each sample was tested for correct recognition (against the other 4 provided by

the same individual) and correct rejection (against all other samples from other

individuals). At the threshold value of 0.61 a total accuracy rate of 95.34% produced

a FAR of 0.031579 (3.1579%) and a FRR of 0.015 (1.5%).

Kumar and Deva Vikram (2010) used ANNs for matching purposes. Once minu-

tiae were located from the skeletal representation of a �ngerprint image11, their

approach was to isolate the detected minutiae in the original pixel image of size 512

x 512 pixels. This image was then reduced to a 15 x 15 matrix (i.e. 225 matrices).

In a matrix where there were minutiae, the intensity values of each pixel (in

that matrix) were summed; this sum was then normalised to the interval [0, 1]. In

a matrix where there were no minutiae the value 0 was allocated.

The matrices were then used as input to the input layer neurons of a multi-

layer back-propagation neural network. Being a supervised learning algorithm, error

signals are calculated at the end of each feed-forward cycle and then propagated

backward through the network by updating the weights connecting the neurons.

For the experiment, 3,500 individuals provided 3 samples of the same �nger (i.e.

10,500 samples). There were 6,000 samples used to train the ANN; consisting of two

samples from each of 3,000 individuals.

11Note: the authors state that alignment of feature sets was unnecessary, because their repre-
sentation method applied to ANNs accounted for relative orientation. This meant also that only
the x and y coordinate attributes were required.
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Thus there were 4,500 samples used to test the trained ANN; consisting of one

sample each from the same 3,000 individuals whose samples had been used to train

the ANN, and three samples each from the 500 individuals whose samples had

not been used during training (3,000 + 1,500 = 4,500). Note that only one ANN

was trained to recognise the 3,000 di�erent individuals' �ngerprints, and only two

samples from each of these 3,000 individuals were used to train the ANN to recognise

their �ngerprint.

The results reported from the experiment were a FAR of 0.0113 (1.13%) and a

FRR of 0.015 (1.5%). These �gures did not attain the same level of accuracy as

some research e�orts discussed above. One reason may be that only two samples

per individual were used when training the ANN. This seems to have impacted on

the ANNs ability to accurately di�erentiate what should be distinctive patterns.

Whilst the representation of �ngerprint local features, proposed by Kumar and

Deva Vikram (2010), has some processing advantages�because of the use of ANNs�

there are also possible disadvantages. A disconcerting impact of the representation

method is that it may not preserve the uniqueness that is provided by the local

feature con�guration. The reason �ngerprint recognition is widely accepted is the

belief that each �ngerprint has a unique local feature con�guration. With the rep-

resentation proposed by the authors, there is no guarantee that �ngerprints from

di�erent individuals will have a completely distinct representation. That is, because

of the lost data due to the processing required to obtain the representation, the

uniqueness may be compromised and it is entirely possible that two �ngerprints

under comparison may end up with the same or a very similar representation.

4.6 Summary Of Minutiae-Based Matching

Techniques

In an e�ort to identify key issues that require consideration when designing an exper-

iment involving feature matching techniques, section 4.6.1 summarises the di�erent

approaches adopted for the minutiae-based matching techniques reviewed in section
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4.5. Section 4.6.2 describes the approach adopted in the current experiment, and

di�erentiates between this approach and the other approaches. Finally, section 4.6.3

discusses the reasons why this approach was adopted for the current experiment.

4.6.1 Approach Adopted By The Reviewed Research E�orts

This section reviews the approaches employed by researchers (who authored the

research e�orts reviewed in section 4.5) for accomplishing the task of veri�cation

using extracted features (more precisely minutiae-based matching techniques). It

was explained in section 4.4.6.2 that there were two common steps required by

feature matching techniques: feature alignment and the matching process.

The �rst step in most minutiae-based matching techniques is the alignment pro-

cess. This process attempts to align the features in the query feature set with

those of the registered feature set. Provided the two feature sets have indeed been

collected from the same �ngerprint, it should be possible to attain an accurate align-

ment. This task has seen di�erent approaches investigated (a number of which are

summarised below), and must be performed prior to attempting the second step (i.e.

the matching process).

For the alignment process to be successfully achieved, a minutia common to

both query and registered feature sets�upon which to base the alignment of both

sets�must be determined. The corresponding pair of minutia thus determined are

generally termed the reference minutiae (one in the query feature set and one in the

registered feature set).

A number of the research e�orts reviewed in section 4.5�for example, (Jain

et al., 1997; Luo et al., 2000; He et al., 2003)�utilised a curved line segment in both

feature sets as a basis for the alignment process (with both line segments originating

at their respective reference minutia). This alignment process was performed for a

localised area of the �ngerprints under examination. Typically, nominated points

along the ridge�originating at the reference minutia�were determined and utilised

in the alignment process.
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Other research e�orts applied di�erent strategies in order to achieve feature align-

ment prior to matching. Of those reviewed in section 4.5, the following strategies

were employed:

• Jiang et al., (2000) utilised the con�guration of local and global �ngerprint

structures to �rst align two samples; the same structure information was used

in the matching process.

• Lee et al., (2002) calculated the normalised ridge distance of a �ngerprint and

used this in conjunction with the con�guration of structures in a localised area

(within a prescribed circle of arbitrary radius).

• Tong et al., (2005) based alignment on points along ridges (in the local area)

adjacent to the ridge originating at the reference minutia, to construct adjacent

feature vectors.

• Qi and Wang (2005) based alignment on a sampling of points along imaginary

lines whose orientations were at nominated angles around a reference minutia.

The angles around the minutia were speci�ed as θ1, θ1 + (2π/3), θ1 + (4π/3),

where θ1 was the orientation of the ridge originating at the reference minutia

(again a local area alignment).

• As discussed in section 4.4.5.2, global �ngerprint features (such as core points)

are sometimes used in the alignment process. Research e�orts by Jie et al.,

(2006) and Ozkaya et al., (2006) were two such examples.

The matching process conducted by a number of the reviewed research e�orts

utilised converted polar coordinates (Jain et al., 1997; Luo et al., 2000; Jiang and

Yau, 2000; Lee et al., 2002; He et al., 2003; Jie et al., 2006). According to Jain et al.,

(1997) polar coordinates minimise the radial distortion properties associated with

non-linear deformations (particularly those occurring in local areas). Also, reduced

error in the calculation of the rotational factor (during alignment) is more likely if

polar coordinates (rather than cartesian coordinates) are used.

A number of the reviewed research e�orts utilised bounding boxes during the

determination of matching points. A bounding box allows two points to be consid-
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ered to match even if their aligned locations are not precisely the same; that is, it

provides a small degree of �exibility when attempting to match two points. This

�exibility is required to allow for non-linear distortions (an inherent property of the

capture process), and to account for any loss of precision during calculation of the

transformation factors (when aligning �ngerprint feature sets).

For their matching process, Jain et al., (1997) utilised converted polar coordi-

nates of minutiae supplied to a string matching algorithm. A normalised matching

score was de�ned, where its determination was based on the number of correspond-

ing minutiae in both feature sets.

Luo et al., (2000) also utilised converted polar coordinates of minutiae supplied

to a string matching algorithm. However, minutiae correspondences between the

two feature sets were determined by an accumulated matching score.

Based on numerous sets of di�erent candidate alignment factors, He et al., (2003)

and Jie et al., (2006) utilised a matching result (which could be interpreted as a

certainty level) to determine the best alignment factor set (i.e. those that resulted

in the most number of correspondences between the converted polar coordinates of

minutiae). The �nal match was based on the maximum matching result.

Jiang et al., (2000) utilised a matching certainty level for their matching process,

and the normalised matching score proposed by Jain et al., (1997), to determine

the �nal matching result. Lee et al., (2002) and Tong et al., (2005) also used the

normalised matching score to determine the �nal matching result. However, their

matching processes were di�erent. Lee et al., (2002) based matching on normalised

di�erence measurements, while Tong et al., (2005) utilised a similarity level.

Qi and Wang (2005) and Ozkaya et al., (2006) based their matching process on a

similarity level. However, Qi and Wang (2005) determined the �nal matching result

based on a normalised matching score of minutiae correspondences and a matching

score based on the orientation �elds. Ozkaya et al., (2006) determined the �nal

matching result using the maximum similarity level.
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Kumar and Deva Vikram (2010) based their matching method on an alternative

feature representation, which did not require feature alignment. Matching was based

on ANN classi�cation.

The next section discusses the approach adopted in the current experiment.

4.6.2 Approach Adopted In The Current Experiment

This section discusses the approach adopted for treatment of �ngerprint feature

data in the current experiment. As with the research e�orts reviewed in section 4.5

(involving minutiae-based matching techniques), the new �ngerprint feature rep-

resentation method developed for the current experiment also required �ngerprint

feature alignment and matching of corresponding minutiae between two feature sets

(refer Chapter 5 sections 5.5.4 and 5.5.5). However, the processes involved di�erent

treatment of data than the other research e�orts12.

Firstly, �ngerprint feature alignment was performed as a separate process in the

current experiment (rather than as part of the veri�cation technique itself), and was

performed for all participants' �ngerprint samples prior to feature selection (refer

Chapter 5 section 5.5.5). As reported in Chapter 5 section 5.5.4, a point pattern

matching algorithm proposed by Van Wamelin et al., (2004) was utilised because

it demonstrated accurate results when tested. Also, the algorithm accommodates

rotation, scale and translation variations, and is robust to missing data and/or

introduced artifacts.

Feature selection was also performed as a separate process, to meet the require-

ments in relation to the determination of 8 local �ngerprint features (and their

attributes)�from each sample�that were to comprise the ANN input vectors (for

training and testing). This process is discussed in Chapter 5 section 5.5.5.

Finally, there was a di�erence between the matching method used in the cur-

rent experiment compared to those employed in the research e�orts reviewed in

section 4.5. Numerous research e�orts used matching certainty levels or similarity

levels to determine the number of corresponding minutiae between two feature sets.

12The reasons for the di�erence in treatment are associated with the objectives of the study, and
are discussed in the next section 4.6.3.
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This quantity was typically normalised in some manner to demonstrate the �nal

matching score. The current experiment utilised Arti�cial Neural Network (ANNs)

to discern patterns within the �ngerprint feature data (determined by the new �n-

gerprint feature representation method)13. Final classi�cation was determined by

the use of a decision threshold applied to ANN outcomes. One ANN was trained

to recognise the pattern of each participant's �ngerprint feature data (that is, there

was one ANN trained for each participant)14.

4.6.3 Rationale For The Adopted Approach

The reason that the above approach was adopted for the current experiment was

in�uenced by two main factors:

1. It was an intension of the author to examine the use Arti�cial Neural Networks

(ANNs) to perform classi�cation of participants' �ngerprint feature data (as

well as their keystroke dynamics data, and data combining these two biometric

characteristics at the feature level). In Chapter 2 section 2.4.3 it was explained

that ANNs (and in particular the Multi-Layer Perceptron with back propa-

gation) is ideally suited to classifying patterns in complex data. To facilitate

ease of ANN training and testing, the input vectors to the ANNs were required

to be of a standard length. Therefore, a new representation method for �n-

gerprint feature data was required, to produce feature vectors of a standard

length (refer Chapter 5 section 5.5.5). Thus this method required a di�erent

approach to the minutiae-based matching techniques.

2. As discussed in Chapter 1 section 1.2.2, the primary objective of the study was

to fuse keystroke dynamics data and �ngerprint feature data at the feature level

(refer Chapter 5 section 5.6). The fusion process was facilitated by representing

13As explained in Chapter 2 section 2.4.3 the Multi-Layer Perceptron (MLP), as a pattern
classi�er, is ideally suited to certain pattern recognition tasks where the data is of a complex
nature, such as the �ngerprint and combined feature data sets involved in the current study. Tried
and tested freeware applications of the MLP are available for ease of implementation. For these
reasons, the MLP was used in the current study.

14To the author's knowledge this approach has not been attempted before, and di�ers to the
approach taken by other researchers who generally train one ANN to classify all participants'
samples.
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�ngerprint features in a standard length feature vector, which required the new

�ngerprint feature representation method. Again, this is a di�erent approach

to the minutiae-based matching techniques.

The details of how the author's new approach was implemented are discussed in

Chapter 5. The next section presents a conclusion to this chapter.

4.7 Conclusion

This chapter has presented an overview of �ngerprint recognition (section 4.2), in-

cluding a discussion of its historical origins, and the question of the uniqueness of

�ngerprint characteristics.

A description of the global and local features that characterise �ngerprints was

then presented, as well a brief insight into their possible uses (refer section 4.3).

The �ve stages of an Automated Fingerprint Identi�cation System (AFIS) were

then outlined (section 4.4). This included a discussion of the acquisition, represen-

tation, pre-processing, feature extraction, and �ngerprint matching stages. For the

�ngerprint matching stage, techniques involved in the classi�cation and veri�cation

of �ngerprints were discussed.

A review of literature involving minutiae-based matching techniques was pre-

sented (in section 4.5). This review discussed the di�erent techniques that have

been developed in this area of research, and provided summary results that can be

used for comparison with the results of the current study.

Finally, section 4.6 summarised minutiae-based matching techniques, and high-

lighted the di�erent approach adopted in the current experiment; the reasons for

adopting this di�erent approach were also explained.



Chapter 5

Experimental Methods

5.1 Introduction

The purpose of the experiment was to determine and compare the veri�cation ac-

curacy achieved by the following biometric characteristic data:

1. Keystroke dynamics data only.

2. Fingerprint feature data only.

3. The feature level fusion of keystroke dynamics and �ngerprint feature data.

Therefore, the experiment was conducted in three phases (in the order listed).

Note that the treatment of data (pre-processing) conducted for phases 1 and 2 of

the experiment was performed to facilitate the requirements for phase 3 (feature

level fusion). This was necessary in light of the objectives and research questions as

speci�ed in Chapter 1 sections 1.2.2 and 1.2.3.

The primary objective was to measure any accuracy improvement gained by

fusing data at the feature level, as compared to the fusion of data at the decision

or con�dence score levels (achieved by other authors). Also, to compare feature

level data fusion results with those involving individual characteristics, as achieved

by other authors and the results of the current study (in phases 1 and 2). Using

di�erent treatment for the individual characteristics than that used for the fused

data would have defeated this purpose, although it may have produced improved

results for phase 1 and/or phase 2 of the experiment.

225
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This chapter describes the experimental process, providing the following details

for the three phases just outlined:

1. Overview of the experimental procedures.

2. Participant requirements and recruitment.

3. Software development for collection of data and conducting the experiment.

4. Data collection procedure.

5. Initial analysis and pre-processing of raw data.

6. Final analysis procedures.

5.2 Experimental Overview

As the experiment required human participation for the collection of data, it was

necessary to gain approval from the Human Research Ethics Committee at Murdoch

University. Initially, approval was sought to collect keystroke dynamics data as the

�ngerprint phase of the experiment was still being researched and collection require-

ments were not known at that time. Whilst awaiting approval to collect keystroke

dynamics data, the software for its collection was developed. Once approval was

granted, the recruitment of participants and collection of keystroke dynamics data

proceeded (see sections 5.3 and 5.4.2 respectively).

When requirements for the collection of �ngerprint data were known, approval

was sought to collect �ngerprint data. Whilst awaiting approval to collect �ngerprint

data, procurement of the necessary equipment was undertaken and software for its

collection was developed. Once approval was granted, the recruitment of participants

and collection of �ngerprint data proceeded (see sections 5.3 and 5.5.2 respectively).

After data collection, software to extract feature information from the keystroke

dynamics data and the �ngerprint data was developed (see sections 5.4.3 and 5.5.3).

Pre-processing of extracted data from both sources followed. As discussed in sections

5.4.4 and 5.5.4, the development of the pre-processing strategies and the consequent

software were critical tasks, requiring rigorous and exhaustive investigation.



5.3. PARTICIPANTS 227

The experiment then proceeded with Arti�cial Neural Network (ANN) analysis

for phases 1 and 2 of the experiment. The procedures are described in sections 5.4.5

and 5.5.6 respectively.

Whilst ANN training was proceeding for phases 1 and 2, the data fusion phase of

the experiment was developed (refer section 5.6). For complementary data fusion,

formation of data sets was simply a matter of concatenating the �ngerprint data

onto the keystrokes dynamics data, for each individual sample (see section 5.6.2.1).

For cooperative data fusion, a feature selection method was determined (see section

5.6.3.1), followed by the fusion of the selected features from both sources (see section

5.6.3.2). The experiment then proceeded with ANN analysis of the phase 3 data.

The procedures are described in sections 5.6.2.2 and 5.6.3.3.

The next section describes the requirements for, and recruitment of, participants

for the experiment. The three sections that follow cover the experimental details for

each of the three phases in relation to points 3 to 6 listed in section 5.1.

5.3 Participants

For the collection of keystroke dynamics data, participants needed to type on a

standard computer keyboard on a regular basis. For the collection of �ngerprint

data, participants had to be in possession of their right index �nger.

Participants were recruited from the sta� and students of the School of Infor-

mation Technology at Murdoch University, Western Australia under the terms of

approval provided by the Human Research Ethics Committee. Participation was

entirely voluntary, and participants could withdraw their participation at any time.

No demographic data about the participants was collected because of the sensi-

tivity of the data (speci�cally the �ngerprint data) and the consequent conditions

under which Ethics Committee approval was granted for data collection. However,

in general, gender was slightly biased towards males and there was a wide age range,

biased slightly towards people in their twenties, and ethnicity was equally divided

between Australian and overseas students (predominantly South East Asian). So

�ndings should be reasonably generalisable.
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Whilst the preference was to enlist at least one hundred volunteers, only ninety

were able to be recruited within the available time frame. Upon recruitment (to

facilitate �le handling during the experiment) the ninety participants were assigned a

participant number between 1 and 90 (i.e. 001, 002, . . ., 090). Once a participant was

assigned a participant number, no record of their real name was maintained. Thus,

there was no way to relate recorded data to a participant's real name1. Also, any

data �les created during the experiment (from recorded data) for any participant,

included a participant number rather than a real name.

Not all participants completed both the typing and �nger scanning tasks. For

reasons associated with gaining Ethics Committee approval for data collection, the

collection sessions for each task were conducted in di�erent semesters, and therefore

not all participants were available to provide samples for both tasks. Where neces-

sary, extra participants were recruited to ensure that there were equal numbers of

data �les for both the keystroke dynamics and �ngerprint scanning.

The data �les attained during the collection phase were of two types; keystroke

dynamics data �les were given a �le name extension of `.txt' (eg: 001.txt) and

�ngerprint feature data �les were given a �le name extension of `.ftr' (eg: 001.ftr).

The data �les were matched according to the participant number given to �le names

during registration (eg: 001.txt was matched to 001.ftr).

It was considered unnecessary for data from the two types of data �les to belong

to the same participant, as there is presumed to be no relationship between the

particular characteristics of an individual's �ngerprints and their typing behaviour.

Hence, any participant's typing data �le could be paired with any participant's

�ngerprint data �le, provided the link was not changed during the experiment.

It became apparent, after approximately 30 volunteers had provided �ngerprint

data, that a slight inconvenience was experienced by participants because of the

time taken to complete the task (refer section 5.5.2). It was therefore decided to

o�er a nominal payment of $10 per participant to compensate for any inconvenience

experienced.

1This was done because of Ethics Committee requirements. Therefore, for the remainder of this
dissertation, participants will be referred to by a participant number rather than a real name.
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5.4 Keystroke Dynamics

5.4.1 Software

The software required for this phase of the experiment was developed and imple-

mented according to the requirements listed below:

1. A program to capture and record raw data (refer section 5.4.2).

2. Programs to calculate the metrics from the raw data, and select those used for

the experiment (refer sections 5.4.3 and 5.4.4).

3. Programs to create the �les for training and testing the ANNs (refer section

5.4.5).

4. Programs to execute training and testing of ANNs (refer section 5.4.5).

5. Programs to calculate results from the ANN testing output �les.

Summaries of all programs developed for this phase of the experiment are pro-

vided in Appendix C section C.1. Where appropriate, algorithms are provided in

the following sections to specify the necessary processing.

The program used to capture the raw data from keystroke events was developed

using Borland C++ Builder. This program presented participants with a Graphical

User Interface (GUI) to guide their data entry (see Figure 5.1), although all data

collection sessions were supervised by the author. Time values associated with

keystroke events were captured (and recorded) at a 1 millisecond resolution.

Samples were required to be correctly typed to ensure consistency for all typed

samples and integrity of the data. Although only data from correctly typed samples

were subsequently used in the experiment, all input samples were recorded.
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Figure 5.1: Graphical User Interface for Keystroke Dynamics Capture Program

Accordingly, the following restraints were incorporated into the capture program

to determine whether entered text strings were valid or not:

• No short cuts were allowed. That is, using copy and paste.

• Correct spelling was required, and case sensitivity was imposed.

• An upper limit of 750 milliseconds, for time intervals between keystroke events,

was imposed. Umphress and Williams (1985) determined that time intervals

over 750 milliseconds indicated a signi�cant lapse in concentration by the

participant.

The actual recorded values were the key press event time and the key release event

time for each character typed. The press and release of the `Enter' key was recorded,

so that the metric (digraph latency) could be obtained for the last character typed.

Each participants data was written to a uniquely named �le, with correctly typed

samples preceded by the character `t' and incorrectly typed samples preceded by the

character `f'.
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Consideration was given to the impact of system interrupts on the timing of

keystroke event capture. However, as data collection was conducted on a stan-

dalone computer, if any interrupts occurred, it was considered that the number of

samples entered by each participant could reasonably be expected to have nulli�ed

any signi�cant e�ects.

The program developed to calculate the metrics from the raw data (refer section

5.4.3) was implemented as a Perl script. Only samples preceded by the character `t'

were used in the calculation of metrics. Once calculated, the metrics were written

to a �le, uniquely named for each participant.

The �Statistical Package for the Social Sciences� (SPSS) software was utilised to

calculate statistics required for the selection of metrics needed for the experiment

(refer section 5.4.4). Once the requisite metrics were identi�ed, Perl scripts were

used to extract and record them accordingly.

The programs to create the �les for training and testing the ANNs were also im-

plemented as Perl scripts, and ensured that no data handling errors were introduced.

The task was broken into the following sub-tasks (refer section 5.4.5):

• Randomly assign each participants metrics data �le to the training or non-

training group.

• Randomly select samples from each of the training group members metrics

data �les.

• Create ANN training input �les, and cross validation �les, for each training

group member.

• Create ANN testing input �les for each training group member.

Training and testing was performed utilising the Matrix Back Propagation Ar-

ti�cial Neural Network. This freeware can be downloaded (with a manual), for

Windows and Unix/Linux operating systems (Anguita, 2007). The product was

used because it has been in use and thoroughly tested for over �fteen years, and

reported to be e�cient and accurate (Anguita et al., 1993).
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A program was written, in the C programming language, to prepare the ANN

outputs for results analysis. Analysis involved the use of Receiver Operating Char-

acteristics (ROC) graphs, to determine a �nal decision threshold and the subsequent

two performance variables (FRR and FAR) for each training group member (refer

Chapter 6 sections 6.3 and 6.4).

5.4.2 Data Collection

Participants were asked to provide typed samples of a 20 character string on a

standard computer keyboard. The decision to use 20 characters was based on earlier

research �ndings (Obaidat and Sadoun, 1997; Abernethy et al., 2004). Though the

�ndings of these research e�orts recommended the use of between 10 and 15 character

strings, for prudence (to ensure that more than enough data was available) a 20

character string was used during data collection (although as explained later not all

metrics calculated from these data were used in the experiment).

The composition of the character string was based on research by Gaines et al.

(1980). Their work indicated that the more discernible character combinations are

`io', `in', `no', `on', `ul', `il', `ly', which are all typed with the right hand. The

equivalent left hand character combinations are `ew', `eb', `bw', `wb', `rs', `es', `st'.

In deriving the character string for the experiment, some of these character

combinations were employed to form a four word phrase (of 20 characters) that was

as sensible as possible. Sensibility was important, so that participants could more

easily learn to type the phrase habitually.

The derived phrase was �lyles best lino sets�. This constitutes 17 alphabetical

characters and 3 space characters, making a total of 20 characters to be entered,

and results in 40 key press and release events for each sample (the time values for

which were recorded). For reasons explained in the next section 5.4.3, the key press

and release time values for the `Enter' key were also recorded for each sample.

As described in section 5.4.1, the keyboard data collection program checked for

erroneous input as well as registering and recording all samples. If a sample was

typed correctly, it was preceded by the character `t' when written to �le. Otherwise,

it was preceded by the character `f' when written to �le.
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Samples preceded by the character `f' were excluded from further processing.

Participants were made aware that incorrectly typed samples were rejected by the

capture program and had to be re-typed. Upon making a typing error during data

entry, nearly all participants merely pressed the `Enter' key and did not bother

completing that sample. So, there was no way to anticipate the number of raw values

that were written to �le by the capture program for an incorrectly typed sample.

It is unknown whether there was any signi�cant impact on data from correctly

typed samples, because of participants having to re-type incorrectly entered samples.

Analysis of this impact (if any) could be investigated in future, but is beyond the

scope of this study.

To ensure that enough samples were collected, each participant was required

to provide 160 correctly typed samples (these were preceded by the character `t'

when written to their �le)2. A brief data collection session was held each week (for

each participant), over an 8 week period (8 × 20 = 160). Each session required a

participant to enter 20 correctly typed samples (with each sample being entered one

after the other). All samples from the �rst week's session (whether correctly typed

or not) were treated as familiarisation for participants; therefore, these samples were

removed from participants' raw data �les. Thus only the samples collected in the

last 7 collection sessions were used in the experiment. To ensure the integrity of the

data, each data collection session was supervised by the author.

Therefore, each participant's raw data �le contained 140 correctly typed samples

(and numerous incorrectly typed samples), with correctly typed samples consisting

of 43 space separated values in the format listed below:

• a preceding character (`t').

• 40 key press and release time values (one for each keystroke event correspond-

ing to the typed phase).

• the key press and release time values for the keystroke event corresponding to

the `Enter' key.

2As indicated earlier, incorrectly typed samples were also written to the same �le; these samples
were preceded by the character `f'.
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As indicated earlier, �les were uniquely named for each participant (using their

participant number), and given a `.txt' extension (i.e. 001.txt, 002.txt, . . ., 090.txt).

Once data collection was complete, no record of participant names was main-

tained. That is, there was no way to relate recorded data to a participant's name.

5.4.3 Metrics

Metrics were calculated for each sample in the data �les 001.txt, 002.txt, . . ., 090.txt,

provided the sample was preceded by the character `t'. The methodology used

to determine the metrics was as described in Chapter 3 section 3.3. For ease of

implementation, each sample was stored in an array. As each correctly typed sample

of raw data contained 43 values, an array storing the raw data had 43 elements (i.e.

index numbers 0 � 42 inclusive). Calculation of metrics (per sample) then became

a trivial iterative mathematical process, as demonstrated in Algorithm 5.1.

Algorithm 5.1 Keystroke Dynamics Metric Extraction

Let length← 40 be the required number of metrics.
Let input← length+ 3 be an array containing the captured raw data.
Let metrics← length be an array for storing the calculated metrics.
Let index← 0 be a loop control variable to access elements of both arrays.

1: If input[index] ==`t' then
2: For index < length do
3: metrics[index]← input[index+ 2]− input[index+ 1]
4: index← index+ 1
5: End For
6: End If

As the extraction of metrics only occurred if the �rst element of the array

(input[0]) was equivalent to the character `t' (Step 1 in Algorithm 5.1), the character

`t' was omitted from calculations as its usefulness was �nished (Step 3 in Algorithm

5.1). That is when index == 0, input[index + 2] accessed the third element of

input and input[index+ 1] accessed the second element of input (thus omitting the

character `t' stored at the �rst element input[0]). Also note that when index == 39,

input[index + 2] accessed element 41 of input, the keystroke event time value cor-

responding to pressing the `Enter' key. This was required to calculate the digraph

latency for the last metric.
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The result of this procedure was a 40 element array of 20 metric pairs. All

140 correctly typed samples in each data �le (001.txt, 002.txt, . . ., 090.txt) were

thus processed, and the resultant metrics were written to corresponding �le names

numbered from 001 to 090, with each �le name preceded by the character `m' and

followed by the extension `.txt' (m001.txt, m002.txt, . . ., m090.txt).

5.4.4 Pre-processing

As just described in section 5.4.3, the result of the metrics extraction process was a

metrics �le for each participant, with each �le comprising 140 samples of 20 keystroke

duration and digraph latency pairs (i.e. 40 metrics). Though 40 metrics were avail-

able, only 20 metrics per sample were selected for the experiment. The decision to

select 20 of the 40 possible metrics was based on previous research which demon-

strated that a 10 character string was su�cient to attain acceptable accuracy (Obai-

dat and Sadoun, 1997). As a 10 character string relates to 20 metrics, it was decided

to utilise that quantity of metrics for the experiment. Therefore, a selection method

was required to determine the best 20 metrics from the 40 available per sample.

As discussed in Chapter 2 section 2.4.3, carefully and intelligently guiding the

ANN training process can improve the capability of an ANN to accurately dis-

cern patterns in noisy data (Wong et al., 2005). That is, the presence of noise

and variability in data can negatively impact on the ANNs recognition capability3.

One technique that can be used to improve ANN recognition capability is cross vali-

dation during training (Wong et al., 2005). This involves selecting a small subset of

the available samples4 for validation during the training process, to reinforce correct

learning by the ANN.

In addition, prior statistical analysis of the data can assist cross validation to

further enhance the training process in its pattern recognition task (Wong et al.,

2005). This involves the identi�cation of metrics responsible for data noise. By

selecting metrics less a�ected by noise, the ANN should then be better able to

discern patterns in the data.

3It should be noted however that without some variability and noise, an ANN can over train.
4In the context of the current experiment, this would mean selecting a subset of the 140 correctly

typed samples, provided they were not designated training samples.
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Many classical statistical tests depend on normality assumptions (The North-

western University Medical School, 2007b). An important aspect with relation to

a normal (Gaussian) distribution, is the frequency of extreme values in the distri-

bution (i.e. values at the tails of the normal distribution curve). The higher the

variable frequencies at the tails, the more noise is evident in the data; this could

negatively impact on the ability of an ANN to accurately discern patterns.

For the purpose of identifying variables responsible for data noise, statistical

measures that can estimate a distribution's coincidence with a normal distribution

(or deviation from it) are:

• Normality coe�cient. The normality coe�cient is a measure of how well the

score frequencies for a variable �t the normal distribution curve. The two

most commonly accepted tests of normality (for samples sizes under 2000) are

the Kolmogorov-Smirnov test and the Shapiro-Wilk test (The Northwestern

University Medical School, 2007b). The Shapiro-Wilk test for normality is

speci�cally designed to detect departures from normality, without requiring

the mean or variance of the data distribution to be speci�ed in advance (the

Kolmogorov-Smirnov test requires a priori knowledge of the mean and vari-

ance). For this reason the Shapiro-Wilk test for normality was chosen for this

study.

A Shapiro-Wilk normality coe�cient equal to (or very close to) 1 indicates a

normal distribution, whereas a coe�cient equal to (or very close to) 0 attests

to an extremely non-normal distribution. Therefore, for the purpose of select-

ing the `best' 20 metrics, by eliminating noisy data, variables that exhibited

normality coe�cients closest to 1 were preferable.

It should be noted that the normality coe�cient will not indicate causes of non-

normality, so examination of the kurtosis and skewness coe�cients for data

may provide clues as to why data exhibits non-normality (The Northwestern

University Medical School, 2007b). Examining these other statistics may also

be helpful in deciding between variables that are vying for selection, but have

returned normality coe�cients very close to each other.
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• Kurtosis coe�cient. The kurtosis coe�cient is the most common measure of

how much a distribution di�ers from the normal distribution (for symmetrical

distributions) (Doric et al., 2007). Two issues that in�uence the kurtosis coef-

�cient are the �atness or peakedness of the distribution curve, and the fatness

or thinness of the tails of the distribution curve.

Pearson's kurtosis coe�cient was introduced as a measure of how �at a sym-

metric distribution is when compared to a normal distribution of the same

variance (Pearson, 1905). Pearson referred to more �at-topped distributions

as `platykurtic'; they exhibit a lower, wider peak around the mean, suggesting

that there is a lower probability (compared to a normal distribution) of values

near the mean. `Leptokurtic' distributions exhibit an acute peak around the

mean, suggesting that there is a higher probability (compared to a normal

distribution) of values near the mean. `Mesokurtic' distributions resemble a

normal distribution, suggesting that there is an equal probability (compared

to a normal distribution) of values near the mean.

Pearson's kurtosis coe�cient evaluated a normal distribution to a coe�cient of

3, which was adjusted by R. A. Fisher (1930) to evaluate to 0 (by subtracting

3 from Pearson's coe�cient). As the coe�cient deviates from 0 (with increas-

ing negative values), the distribution is considered platykurtic (�at-topped).

As the coe�cient deviates from 0 (with increasing positive values), the distri-

bution is considered leptokurtic (peaked); if the coe�cient is equal to (or very

close to) 0 the distribution is considered mesokurtic (relatively normal).

So initially, the kurtosis coe�cient was considered a measure of whether the

data was peaked or �at relative to a normal distribution. However, some

authors now accept that kurtosis coe�cient measures the tails of a distribution

and its shape near the mean value (Doric et al., 2007). De Carlo (1997)

proposed that the kurtosis coe�cient is primarily in�uenced by the fatness

or thinness of the tails of the distribution, and secondarily by the �atness

or peakedness of the distribution. Extremely non-normal distributions may

have high positive or low negative kurtosis coe�cients, while nearly normal
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distributions will have kurtosis coe�cients very close to 0 (De Carlo, 1997).

The kurtosis coe�cient is positive if the tails are `heavier' than for a normal

distribution (i.e. have fat and/or long tails) and negative if the tails are `lighter'

than for a normal distribution (i.e. have thin and/or short tails).

For example, a kurtosis coe�cient of 0.062 could be considered to indicate

a relatively normal distribution because it is close to zero. It indicates that

there are unlikely to be signi�cant variable frequencies in the tails of the dis-

tribution curve, and that the distribution is mesokurtic (i.e. normally high).

As the kurtosis coe�cient departs further from zero, a positive value indi-

cates the increasing possibility of longer/fatter tails and a leptokurtic (i.e.

peaked) distribution; a negative value indicates the increasing possibility of

shorter/thinner tails and a platykurtic (i.e. �at-topped) distribution.

If the kurtosis coe�cient indicates higher variable frequencies around the

mean, then there may not be any harmful e�ects on ANN training. How-

ever, if the kurtosis coe�cient indicates higher variable frequencies around

the tails, then noisy data is evident. This knowledge could be useful when

choosing between variables with similar normality coe�cients.

• Skewness coe�cient. The skewness coe�cient is a measure of the degree and

direction of asymmetry of the distribution of data (Wuenschk, 2007). A distri-

bution is symmetric if it looks the same to the left and right of the centre point

(i.e. arithmetic mean). A symmetric distribution has a skewness coe�cient

equal to (or very close to) 0. A distribution that has a negative coe�cient is

skewed to the left, and typically occurs when the mean is less than the median,

and the tail is skewed left (i.e. the bulk of distribution is on the right). A

distribution that has a positive coe�cient is skewed to the right, and typically

occurs when the mean is greater than the median, and the tail is skewed right

(i.e. the bulk of distribution is on the left).

A skewness coe�cient close to 0 is favourable as this indicates a balanced

distribution, as is demonstrated by a perfectly normal distribution (which has

a skewness coe�cient of 0).



5.4. KEYSTROKE DYNAMICS 239

For the purpose of determining noisy data, a skewness coe�cient signi�cantly

removed from 0 indicates a non-normal distribution. Again, this knowledge

(along with the kurtosis coe�cient) could be useful when choosing between

variables with similar normality coe�cients.

• Standard deviation. The standard deviation is a measure of dispersion. It

provides an indication of the spread of the data values in a distribution. That

is, how much each value deviates from the mean (The Northwestern University

Medical School, 2007a). Standard deviation is calculated as the square root

of the variance, and therefore has the same linear units as the original data

values (instead of the squared units of the variance).

Like the mean, the standard deviation makes use of all the available sample

data, and can be heavily in�uenced by any extreme values, or by skewed data.

Because the standard deviation is based on squared deviations (the variance),

a single aberrant value can make a huge di�erence in the calculated statistic

(The Northwestern University Medical School, 2007a).

Thus, a standard deviation closer to 0 would indicate less data variability (in

relation to the tails of a normal distribution curve), but as the variance in-

creases there is more likely to be increasing instances of variability. Again,

this knowledge (along with the kurtosis coe�cient and the skewness coe�-

cient) could be useful when choosing between variables with similar normality

coe�cients.

A distribution with a normality coe�cient (using the Shapiro-Wilk test) equal

to (or very close to) 1 should inevitably have kurtosis and skewness coe�cients close

to zero. Signi�cant kurtosis and skewness coe�cients clearly indicate that data are

non-normally distributed, and in particular are likely to contain noisy data.

5.4.4.1 Keystroke Dynamics Feature Selection

In section 5.4.3, the calculation of metrics was explained, which resulted in a metrics

�le for each of the 90 participants (m001.txt, m002.txt, . . ., m090.txt); each �le

contained 140 samples, with 40 metrics per sample. Each metric in a �le was a
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time value for a particular keystroke event, corresponding to a speci�cally typed

character. The metric for a speci�cally typed character was in the same position in

all 140 samples. That is, the keystroke duration for the �rst character `l' was in the

1st position in all 140 samples; the digraph latency for the �rst character `l' was in

the 2nd position in all 140 samples; the keystroke duration for the second character

`y' was in the 3rd position in all 140 samples; and so on, with the digraph latency

for the last character `s' in the 40th position in all 140 samples. This was true for

all participants' metrics �les.

The statistical analysis of data in these �les utilised the SPSS software package.

When loaded into the statistical package, the samples in the metrics �les are denoted

as records and the metrics are denoted as variables. This can be thought of as a ma-

trix, where the samples/records are the rows of the matrix and the metrics/variables

are the columns of the matrix. Thus, statistical analysis was performed on the met-

rics/variables (or columns of the matrix) across all 140 samples/records (rows).

For the feature selection process, the four statistics (discussed in the previous

section) were employed to select the most representative 20 metrics/variables. Thus,

the four statistics were determined for each of the 40 metrics/variables (or columns),

across all 140 samples/records (or rows); this was performed for each participant.

The importance (to the selection criteria) of each of the statistics is re�ected in

the following priority listing:

• The normality coe�cients were rated highest priority.

• The kurtosis coe�cients were rated the next highest priority.

• The skewness coe�cients were rated equal lowest priority with the standard

deviation.

Table 5.1 demonstrates the priority rating scheme devised to facilitate the se-

lection process (in relation to the importance of the four statistics just listed), by

allocating weights to them5.

5Note that for each statistic, the decrement was calculated by dividing 40 (i.e. the number of
metrics/variables) into the Highest Placed rating.
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Highest Placed 2nd Highest Placed Decrement

Normality coe�cient 1.0 0.975 0.025
Kurtosis coe�cient 0.5 0.4875 0.0125
Skewness coe�cient 0.2 0.195 0.005
Standard deviation 0.2 0.195 0.005

Table 5.1: Priority Ratings

The priority rating scheme illustrated in Table 5.1 was implemented as follows

(for each participant):

1. The normality coe�cient using the Shapiro-Wilks test was given highest prior-

ity. Simply, the chosen metrics should be as normally distributed as possible,

as a normal distribution (with low noise in the tails) suggests a more discernible

pattern, and should assist ANN training (Wong et al., 2005). Metrics/variables

with coe�cients closer to 1 were preferable.

Therefore, the normality coe�cients for all 40 metrics/variables were placed

in descending order such that the value closest to 1 was placed highest and the

value closest to 0 was placed lowest. The metric/variable with the highest co-

e�cient was assigned the rating value 1. The metric/variable with the second

highest coe�cient was assigned the rating value 0.975, the metric/variable with

the next highest coe�cient was assigned 0.95, and so on. The metric/variable

with the lowest coe�cient was assigned the rating value 0.025.

2. The kurtosis coe�cient was given next highest priority, because of its ability to

estimate the degree to which a distribution di�ers from the normal distribution.

The greater the number of high frequency scores near the tails, the more

data variability was evident. This would a�ect the ability of the ANN's to

accurately determine patterns during the training process. Metrics/variables

with kurtosis coe�cients closer to 0 were preferable, as this suggested less data

variability. Because kurtosis coe�cients may have positive or negative values,

and because proximity to 0 is of primary importance for ranking purposes,

their absolute values were utilised.

Therefore, the absolute values of the kurtosis coe�cients for all 40 metrics/

variables were placed in ascending order such that the value closest to 0 was
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placed highest and the value furthermost from 0 was placed lowest. The

metric/variable placed highest was assigned the rating value 0.5. The met-

ric/variable placed second highest was assigned the rating value 0.4875, the

metric/variable placed next highest was assigned 0.475, and so on. The met-

ric/variable with the lowest coe�cient was assigned the rating value 0.0125.

3. The skewness coe�cient was given equal lowest priority with the standard

deviation statistic. A high skewness coe�cient generally negatively impacts

on the normality coe�cient. Whilst the normality coe�cient was given high-

est priority, the skewness coe�cient was useful when deciding between met-

rics/variables where the normality and kurtosis coe�cient coe�cients were

very close. Metrics/variables with skewness coe�cients closer to 0 were prefer-

able. Again, their absolute values were utilised.

Therefore, the absolute values if the skewness coe�cients for all 40 met-

rics/variables were placed in ascending order such that the value closest to

0 was placed highest and the value furthermost from 0 was placed lowest.

The metric/variable placed highest was assigned the rating value 0.2. The

metric/variable placed second highest was assigned the rating value 0.195,

the metric/variable placed next highest was assigned 0.19, and so on. The

metric/variable with the lowest coe�cient was assigned the rating value 0.005.

4. The standard deviation was also given equal lowest priority with the skew-

ness coe�cient. Like the skewness coe�cient, standard deviation was used to

help decide between metrics/variables where the normality and kurtosis coef-

�cient coe�cients were very close. Consequently, it was given equal priority

to skewness.

Therefore, the standard deviation for all 40 metrics/variables, were placed in

ascending order such that the value closest to 0 was placed highest and the

value furthermost from 0 was placed lowest.

The metric/variable placed highest was assigned the rating value 0.2. The

metric/variable placed second highest was assigned the rating value 0.195,
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the metric/variable placed next highest was assigned 0.19, and so on. The

metric/variable with the lowest coe�cient was assigned the rating value 0.005.

Note that in general, the standard deviations in the data distributions (for this

experiment) were relatively high because the known high variability associated

with keystroke dynamics raw data (refer Chapter 3 section 3.5).

Once the four individual statistics were ordered for all 40 metrics/variables and

the assignment of weights was completed (according to the above description), a tally

of the four assigned weights (corresponding to the individual statistics) was calcu-

lated for each metric/variable. That is, the weights assigned to a metric/variable

for their ranked normality, kurtosis, and skewness coe�cients and standard devia-

tion were summed; this was done for all 40 metrics/variables (which resulted in 40

tallies). The forty tallies were then ranked in descending order, and the top 20 met-

rics/variables (based on these rankings) were selected to be used in the experiment.

This process was conducted for each participant.

Recall that this statistical analysis was performed on each of the 40 metrics/

variables across all 140 samples/records for each participant. Also recall, that each

of the 40 metrics/variables had the same column position in all samples/records. So

once selected, a metric/variable (by its column number) indicated the index number

used to access the metric value (from within the array used to store the actual

metrics data), for all 140 samples. That is, the same metric was selected from each

sample. This was true for the 20 metrics/variables selected. The same process was

applied to all participants' metrics data �les.

As can be deduced from the priority rating scheme, points 2 to 4 (discussed

above) only really a�ected the choice of the last 1�5 metrics/variables, where the

normality coe�cients may have been equivalent or very close together.

Appendix B provides an worked example of the metrics selection process. The

example is presented in four stages, with the relevant data presented in Tables B.1,

B.2, B.3, and B.4.
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Of particular note is that the selected metrics for each participant were di�erent.

To illustrate, Tables 5.2 and 5.3 below provide an example. Firstly, recall that the

actual metrics (time values) were stored as elements of an array, and that array

index numbers (for this example) increment from 0 to 39. The array index num-

bers presented in Table 5.2 show the column positions of the selected metrics for

participant one6:

5 9 11 13 14 16 19 23 27 28 29 30 31 32 33 34 36 37 38 39

Table 5.2: Indices Of Selected Metrics For Participant One

The array index numbers presented in Table 5.3 show the column positions of

the selected metrics for participant three:

8 9 10 11 12 13 14 15 17 19 21 22 27 29 30 32 33 34 35 37

Table 5.3: Indices Of Selected Metrics For Participant Three

It is quite clear that the selected metrics are very di�erent (as indicated by the

array index numbers), and this was typical for all participants.

In an e�ort to add another dimension to each participants' pattern of typing (for

data analysis), it was decided to include some global statistics about each sample

(along with the selected metrics), to provide a descriptive summary of the sample.

The mean and standard deviation of the selected keystroke duration metrics

and the mean and standard deviation of the selected digraph latency metrics were

calculated7. As the quantity of each metric type (keystroke duration and digraph

latency) varied for di�erent participants, it was considered that this approach would

possibly provide further di�erentiation of participant data. Note that even though

the selected metrics/variables column positions indicated the index numbers to ac-

cess (to obtain the actual metrics), the actual metric values at each of these index

numbers were di�erent from sample to sample (for each participant).

6These index numbers correspond to the selected metrics demonstrated in the worked example
provided in Appendix B. Note that values in Table 5.2 are index numbers (starting from 0) and
consequently are one less than the selected metrics demonstrated in Appendix B Table B.4.

7The ordinal property of array index numbers (which increment by 1 from 0) means that even
numbered index numbers indicate keystroke duration metrics and odd numbered index numbers
indicate digraph latency metrics. This facilitated easy access of the correct metrics and calculation
of the summary statistics.
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The 4 global statistics and the 20 selected metrics from each sample (for all 140

samples per participant) were used as input data for the remaining stages of the

experiment. As an example, Table 5.4 shows one sample taken from the input �le

for participant 1, given the selected index numbers presented in Table 5.2. Note that

each participants input �le consisted of 140 samples, with the sample illustrated in

Table 5.4 being one such example.

Once selection was complete, the metrics were normalised according to the

min/max method (Indovina et al., 2003). Normalised metrics were then written

to uniquely named �les for each participant (according to their participant num-

ber). Files names were preceded by the character `m', with a `.txt' extension (i.e.

m001.txt, m002.txt, . . ., m090.txt).
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5.4.5 Final Analysis Procedure

The �les used in the �nal analysis procedure were those speci�ed in the previous

section (i.e. m001.txt, m002.txt, . . ., m090.txt), which contained 140 samples with

24 normalised metrics per sample. Using the participant numbers assigned during

recruitment (refer section 5.3), participants were randomly allocated to the training

group and the non-training group. The normalised metrics �les associated with each

of the participants were segregated in the same manner.

As all 140 samples in each of the non-training group members' �les were available

to test for correct rejection, it was considered that forty data �les would provide

enough data for this purpose. Accordingly, �fty participants (and their associated

�les) were assigned to the training group, and the remaining forty participants (and

their associated �les) were assigned to the non-training group.

Henceforth, those participants (and their associated data �les) allocated to the

training group are referred to as training group members (and training group mem-

ber �les). Those participants (and their associated �les) allocated to the non-training

group are referred to as non-training group members (and non-training group mem-

ber �les).

As explained in sections 5.4.5.1 and 5.4.5.2, only a subset of the samples in each

training group member's �le were selected for training an ANN to recognise their

typing pattern; the remaining samples in that �le were used to test their trained

ANN for correct recognition. Also, samples from all other training group members'

�les (that were not used for training their own ANN) were utilised to test a member's

trained ANN for correct rejection.

The point must be made clear here, that one ANN was trained to recognise the

pattern within one training group member's data. So for 50 training group members,

there would be at least 50 individual ANNs trained. However, as explained in the

next section, the number of middle layer neurons was varied when training the ANNs

for each training group member; so in fact, there were many more that 50 individual

ANNs trained.
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The non-training group members' �les were used for testing purpose only. That

is, they were used to test all training group members' trained ANNs for correct

rejection. The reason for this is to demonstrate the ability of the trained ANN to

accurately reject patterns in data that it has not seen before (and more importantly

that these data are not falsely recognised). This is known as the ability to generalise.

The experiment then proceeded with the training and testing phases. For the

description in the following two sections, Figure 5.2 has been provided to assist with

understanding the creation of training and testing �les8.

5.4.5.1 Training Phase

Each training group member had an input �le created for training an ANN to

recognise their pattern; that is, one ANN per training group member. The training

�le for each training group member was generated as follows (refer Figure 5.2):

• 30 samples (of the 140 available) were randomly chosen from that member's

data �le, for the positive training case. Samples for the positive training case

are those that the ANN is intended to discern patterns within.

• 1 sample was randomly chosen from each of the other training group members

data �les, for the negative training case. As there were 49 other training group

members, this meant 49 samples. Samples for the negative training case are

those that the ANN is not intended to recognise; they are used to help the

ANN recognise patterns in the positive case samples. That is, when trying to

recognise a pattern, it is helpful to present patterns that are not meant to be

recognised.

Each training group member also had a �le created for cross validation during

the training process. These were generated as follows:

• 10 samples were randomly chosen for that member, from the same data �le

from which the 30 training samples were chosen (but excluding the training

samples).

8For convenience of illustration, Figure 5.2 shows the training group data �les numbered 1 to
50 and the non-training group data �les numbered from 51 to 90. As just discussed, allocation of
participants and their data �les to these groups was performed randomly, not sequentially.
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The choice of 30 positive case training samples, and 10 cross validation samples,

was based on a rule of thumb suggested by Kasabov (1996). With 40 samples

removed and used for training purposes, this meant that there were 100 remaining

samples per training group member set aside for testing purposes.

Therefore, each training group members input �le (for training) consisted of 79

input samples (30 for the positive training case plus 49 for the negative training

case), with 24 metrics per sample. There were 50 such training input �les (one for

each participant). There were also 50 validation �les (consisting of 10 samples, with

24 metrics per sample); one for each training group member, corresponding to each

of their training �les.

The objective of the training phase was to obtain a registered template associated

with each training input �le (i.e. for each participant). For the experiment, the back

propagation Arti�cial Neural Network (ANN) architecture was used. When training

the ANNs, each input layer node corresponded to each of the 24 metrics (per sample)

from the training input �le.

The number of hidden layer nodes was varied from 2 to 48 (inclusive), for each

training input �le. This was done because there is no standard rule that speci�es

how many hidden layer nodes should be used, and so the most appropriate ANN

con�guration for each member must be determined by trying di�erent con�gurations

and seeing which one performed best.

The reason for the upper limit of 48 hidden layer nodes was based on the fact

that keystroke dynamics data demonstrates a high degree of variability. After some

preliminary trial and error testing, it was thought prudent to compensate for this

variability by utilising an upper limit that was double the number of input layer

nodes (i.e. 24 input layer nodes times 2).

As a result, there were 2,350 individual ANNs trained (47 con�gurations for 50

participants). The ANN training phase for keystroke dynamics data (with the mul-

tiple con�gurations just described) was conducted using a desktop computer with a

2 Ghz AMD processor and 512 MB RAM. Training took 25 days (i.e. approximately

12 hours per participant).
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Once training was completed, all ANN con�gurations were subjected to pre-

liminary assessment to determine the single con�guration (for each training group

member) that returned the least number of false acceptances (Type I errors) and

false rejections (Type II errors). This process was performed manually because the

determination required assessing the trade-o� between the two error types.

Basically, the con�guration that returned the least number of Type I errors,

whilst returning Type II errors at an acceptable level was selected. The same pro-

cess was applied for all training group members, and the weights of the ANN con�g-

urations (thus selected) were used as registered templates from that point onwards.

These were written to a �le (such that the participant number and number of hid-

den layer nodes were indicated in the �le name, and given a `.w' extension) and

subsequently used during the testing phase.

5.4.5.2 Testing Phase

Each training group member had an input �le created for testing their trained ANN.

The testing �le for each training group member was generated as follows (refer Figure

5.2):

• 100 samples (i.e. 140 less those samples used in the training phase) for the

member being tested were used for the positive testing case.

• 100 unused samples from each of the other training group members were used

for the negative testing case.

• 140 samples from each of the non-training group members were used for the

negative testing case.

Positive case testing examines whether the ANN has correctly recognised samples

belonging to the member that it has been trained to recognise (samples it has not

seen during training). Non-recognition of any of these 100 positive case samples are

instances of Type II errors (false negatives) (refer Chapter 6 section 6.2).

Negative case testing examines whether the ANN has correctly rejected sam-

ples belonging to someone other than the member it has been trained to recognise.
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Recognition of any of these negative case samples are instances of Type I errors

(false positives) (refer Chapter 6 section 6.2).

So for each training group member, the samples from each relevant �le (in the

order listed above) were read and written to their testing input �le. Therefore, each

training group member had a testing input �le consisting of 10,600 input patterns

(i.e. 100 for the member being tested, plus 100 for each of the other 49 training

group members, plus 140 for each of the 40 non-training group members), with 24

metrics per sample. There were 50 such testing input �les (one for each training

group member). The results of the testing phase are provided in Chapter 6, and a

discussion of these results is presented in Chapter 7.

5.5 Fingerprint Recognition

5.5.1 Software

The software required for the experiment was developed and implemented according

to the requirements listed below:

1. A program to capture �ngerprint scans and extract �ngerprint feature data

(refer section 5.5.2).

2. Programs to align the extracted �ngerprint feature data according to their

position, and to select those features used in the experiment (refer sections

5.5.4 and 5.5.5).

3. Programs to create the �les for training and testing the ANNs (refer section

5.5.6).

4. Programs to execute training and testing of ANNs (refer section 5.5.6).

5. Programs to calculate results from the ANN testing output �les.

Summaries of all programs are provided in Appendix C section C.2. Where ap-

propriate, algorithms are provided in the following sections to specify the necessary

processing.
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Figure 5.3: Graphical User Interface for Fingerprint Feature Capture Program

The program used to capture �ngerprint feature data was developed using Visual

C++. This program presented participants with a Graphical User Interface (GUI)

to facilitate the �ngerprint scanning procedure (see Figure 5.3), although all data

collection sessions were supervised by the author. The program utilised the Ver-

i�nger Software Development Kit (SDK) 4.2 Visual C++ library to interface with

the �ngerprint scanning device and to extract the �ngerprint features. Thus the

�rst two stages of the AFIS (acquisition and feature extraction) utilised third party

hardware and software. The program developed by the author for data collection

was done at the application level.

It was a condition of the Ethics Committee approval that no actual �ngerprint

scans be permanently recorded. Therefore, only extracted feature data was recorded.

The extracted feature data from all scans were recorded, even though identi�ed
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outlier samples were not used in the experiment. Outlier samples were determined

as those whose minutiae count was not within one standard deviation of the mean

number of minutiae for the same participant. Each participants extracted feature

data was written to a uniquely named �le (refer section 5.5.2).

The program to align or register the feature data was written in the C pro-

gramming language. Registration entailed the alignment of the local feature data

according to their positions in the two dimensional coordinate plane. This meant

that a common alignment of feature layout was achieved, so that all samples from

a particular participant could be compared (see section 5.5.4).

Once the features were aligned, those features present in 140 samples (per partici-

pant) were used to select features for use in the experiment (refer section 5.5.4). Once

the requisite features were identi�ed, they were extracted and written to uniquely

named �les.

The programs to create the �les for training and testing the ANNs were imple-

mented as Perl scripts, and ensured that no data handling errors were introduced.

The task was broken into the following sub-tasks (refer section 5.5.6):

• Randomly assign each participants feature data �le to the training or non-

training group.

• Randomly select samples from each of the training group members feature

data �les.

• Create ANN training input �les, and cross validation �les, for each training

group member.

• Create ANN testing input �les for each training group member.

Training and testing was again performed utilising the Matrix Back Propagation

ANN (Anguita, 2007).

The same program used to prepare the ANN outputs for results analysis in the

keystroke dynamics phase (mentioned in section 5.4.1) was utilised again to prepare

the ANN outputs for results analysis in the �ngerprint recognition phase.
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5.5.2 Data Collection

Fingerprint scans of each participants right index �nger were captured using the

Digital Persona U.ARE.U 4000 optical �ngerprint scanner. Each scan resulted in a

binary raster image of the �ngerprint. This was represented as a grey-scale 320 by

350 pixel matrix, with each pixel consisting of a byte. However, only the features

from each scan were extracted (in real time during the scanning process), and there-

fore only the features were recorded for use in the experiment. That is, the image

of the scan was only stored temporarily in memory, to facilitate feature extraction.

The reasons for recording only �ngerprint features for the experiment were:

• In light of the sensitivity associated with storing �ngerprints, gaining Ethics

Committee approval to retain full �ngerprint images would have been a more

involved and convoluted process.

• It was believed that gaining the appropriate number of participants would

have been di�cult unless they were convinced that their �ngerprint images

were not being stored.

• As mentioned in section 4.4.2, there are two schemes adopted for representation

of a captured �ngerprint image. One utilises grey-scale images and the other

utilises extracted features. It was always the intention of the author to utilise

extracted local features (minutiae) for veri�cation, as the experiment relied on

the detail available from such data. Therefore, the choice was made according

to the intent of the treatment of the data.

In terms of the stages of an AFIS, pre-processing and feature extraction (stages

2 and 3 discussed in Chapter 4 sections 4.4.3 and 4.4.4) were performed by third

party software. The author utilised the Veri�nger Software Development Kit (SDK)

4.2 Visual C++ library to interact with the above mentioned scanner and to extract

the �ngerprint features (refer section 5.5.3). Any further treatment of the extracted

�ngerprint features was performed to represent the data for future use in the data

fusion phase of the experiment (refer section 5.5.4).
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As the �ngerprint feature treatment procedure was to be newly developed, it

was necessary to determine the correct number of samples to be collected from

participants. The quantity of 140 samples was determined using data collected from

a pilot study (Abernethy et al., 2005) and the following statistical formula (Brase

and Brase, 2004):

N = (
Zc × σ
E

)2 (5.1)

where Zc is the z value of the con�dence required; σ is the largest standard deviation

value from the metrics in the pilot study; E is an acceptable error. Whilst the result

of the calculation was approximately 136, this was rounded to 140 for convenience,

and because it matched the number of samples collected for the keystroke dynamics

phase of the experiment (there being an intention to combine data sets).

Participants were asked to provide 140 scans of their right index �nger, in one

collection session. However, because of scanner inaccuracy and variability associated

with collection of biometric data, participants on average had to provide approxi-

mately 200 scans in order to obtain the required 140 `representative scans'9. This

took each participant approximately 10 to 15 minutes, depending on how many

samples were actually collected.

The procedure for determining whether a scan was representative of a participant

was based on statistical measures, as follows:

1. The mean and standard deviation of the number of minutiae for the �rst 140

scans were calculated.

2. Representative scans were identi�ed as those where the minutiae count was

within one standard deviation of the mean.

3. Participants were asked to provide additional scans to replace non-representative

scans (i.e. those scans where the minutiae count was outside one standard de-

viation of the mean).

9Although only data from representative scans were subsequently used in the experiment, data
from all input samples were recorded.
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Steps 2 and 3 were repeated (utilising the same mean and standard deviation

calculated in step 1) until 140 samples (considered representative) were obtained.

The scanner platen was cleaned after every 20 scans. Whilst cleaning was being

performed, participants could wipe their �nger with a clean cloth that was on hand, if

they noticed moisture build up on their �nger. It is now believed that a contributing

factor for participants having to provide so many scans (in order to obtain their 140

representative samples), was inaccuracy caused by build up of bodily �uid on the

scanner platen during the scanning procedure. In hindsight, it may have been more

appropriate to clean the scanner platen after every 10 scans.

For each participant, feature information contained in all of their scans (repre-

sentative and non-representative) were written to a uniquely named �le in a binary

format (by the Veri�nger SDK). File names were numbered according to the partic-

ipant numbers assigned during recruitment (refer section 5.3), with each �le name

followed by the extension `.ftr' (i.e. 001.ftr, 002.ftr, . . ., 090.ftr).

5.5.3 Fingerprint Feature Extraction

Using the Veri�nger SDK to extract features from the �les obtained in the previous

section (i.e. 001.ftr, 002.ftr, . . ., 090.ftr), two global and all local feature information

were accessible for extraction. The available global features were the ridge count

and the minutiae count. The local feature information included (refer section 4.3.2):

• The minutia type. The type was returned as either ridge termination (desig-

nated type 1) and ridge bifurcation (designated type 2).

• The position. This information was returned as x and y coordinates in the

two dimensional plane. The boundaries of the plane were 0 to 319 along the

x axis and 0 to 349 along the y axis.

• The spatial frequency (i.e. the average distance between ridges in the neigh-

bourhood of a minutia point).

• The orientation of the ridge that approaches a minutia point (i.e. the angle

between the tangent to the ridge at a minutia position and the horizontal axis)

- refer section 4.3.2.
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• The curvature of the ridge as it approaches a minutia point (i.e. the rate of

change of the ridge orientation as the ridge approaches a minutia point) - refer

section 4.3.2.

The extracted �ngerprint features from each scan were written to a uniquely

named �le for each participant. File names were numbered according to the partic-

ipant numbers assigned during recruitment (refer section 5.3), with each �le name

preceded by the character `m' and followed by the extension `.txt' (i.e. m001.txt,

m002.txt, . . . m090.txt). Once features were extracted and recorded, their alignment

was necessary as discussed in the next section.

5.5.4 Local Feature Registration

When performing multiple scans of a �nger, it is highly improbable that the �nger

will be placed in exactly the same position for any two scans (Digital Persona, 2004).

This means that the features of a �ngerprint image at scan n, will almost always be

in di�erent positions than the features of an image of the same �nger at scan n+ 1.

However, though the features may be in di�erent absolute positions according to

their x and y coordinates, they should still maintain their positions relative to each

other, except for minor distortions as discussed in Chapter 4 section 4.3.2 and 4.4.3.

Therefore, alignment of the features extracted from the images becomes necessary

to render them rotation, scale and translation invariant. This process is termed

registration.

As data collection for this study entailed extraction and storage of �ngerprint

features only, the registration process required the transformation of the local fea-

ture data sets extracted from images, rather than the images themselves. Given

that these feature data sets represent points in a two dimensional plane, positioned

according to their x and y coordinates, the only information that required transfor-

mation were the feature coordinate positions (the corresponding attributes of each

feature needed no treatment, so long as the association between them remained

intact).
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So the registration process became an exercise in point pattern matching to de-

termine the transformation factors that would align the points (features) in one

feature data set to corresponding points (features) in another feature data set (pro-

vided they were from the same �nger).

In the �eld of image registration, a model image is used to align other images of

the same scene that may have been displaced by rotation, scale and/or translation.

The processes utilised (in the current study) for the selection of the model image

and the registration of scene images, are discussed in detail in the next two sections

5.5.4.1 and 5.5.4.2.

However, before elaborating on the process of registering the �ngerprint feature

sets, a simple example is presented to demonstrate the concept of registration. The

example is illustrated in Figure 5.4, which consists of 6 images (a to f). Also, Table

5.5 presents the actual coordinate positions (rounded to 2 decimal places) of the

points corresponding to those in the 6 images shown in Figure 5.4. Headings in

Table 5.5 indicate the appropriate data set corresponding to each of the images.

Image (a) presents the model data set containing 5 hypothetical points.

Image (b) presents the scene data set with the same 5 points displaced by rotation,

scale, and translation.

Image (c) shows the scene data set rotated by an angle of 150.

Image (d) shows the rotated scene data set translated along the x axis by 75.0.

Image (e) shows the resultant scene data set (from the previous 2 transformations)

translated along the y axis by −50.0.

Image (f) shows the resultant scene data set (from the previous 3 transformations)

scaled by a factor of 1.05.

Therefore, image (f) illustrates the �nal location of the 5 points from the original

scene data set after all transformations were performed. Note that in image (f) the

�nal coordinates of the 5 points in the scene data set (after transformation) are

not identical to the coordinates of the corresponding points in the model data set,

but are relatively close. The minor di�erences can be attributed to lose of precision

during processing.
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Model Data Set (a)

X Coordinates Y Coordinates
150.0 200.0
250.0 100.0
75.0 150.0
275.0 250.0
100.0 50.0

Scene Data Set (b)

X Coordinates Y Coordinates
84.19 240.79
151.37 124.45
3.07 213.36
211.19 255.95
1.43 115.45

Scene Data Set Rotated (c)

X Coordinates Y Coordinates
71.25 234.15
166.25 146.35
0.00 189.20
189.99 279.52
23.75 100.78

Scene Data Set Translated (d)

X Coordinates Y Coordinates
146.25 234.15
241.25 146.35
74.99 189.20
264.99 279.52
98.75 100.78

Scene Data Set Translated (e)

X Coordinates Y Coordinates
146.25 184.15
241.25 96.35
74.99 139.20
264.99 229.52
98.75 50.78

Scene Data Set Scaled (f)

X Coordinates Y Coordinates
153.56 193.36
253.31 101.17
78.75 146.16
278.25 240.99
103.69 53.32

Table 5.5: Example Registration Tables

5.5.4.1 Model Feature Set

In the current study, the method utilised to determine a model feature set for each

participant was based on the average distance between local features in feature

sets. That is, in a feature set�belonging to an individual participant�the distance

between a local feature and all other local features in that feature set was calculated

(according to Equation 5.2 on page 267). This process was repeated for all local

features in the same feature set. For example, if a feature set contained 30 local

features, then 30 distance measures would be determined (from each of the 30 local

features to all other local features in that feature set).

Once all distances (from all local features to all other local features in a feature

set) were determined, an average distance was then calculated for that feature set

(based on the determined distances). This process was performed for all feature sets

belonging to an individual participant.
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A comparison was then made between the average distances for all feature sets

(i.e. those from all scans) for that participant, and the feature set corresponding to

the smallest average distance was nominated as the model feature set. The rationale

for this decision was that the feature set with the smallest average distance would

most probably be the most representative of the feature sets (when compared to the

other feature sets belonging to the same participant), upon which to base feature

alignment. This model feature set was then used in the registration of all of that

participant's feature sets. The same process was applied in determining a model

feature set for all participants.

Whilst this process was computationally expensive, the only other known option

for selecting a model feature set for each participant was to graph all their feature

sets and visually determine the most representative feature set. Comparing the

characteristics of all feature sets to accurately choose the appropriate feature set

was considered too onerous and prone to errors in judgment. Doing so for all 90

participants was considered an impractical and unrealistic solution, and not reliably

repeatable.

5.5.4.2 Scene Feature Set Alignment

Overview

The point pattern matching algorithm utilised to align participants' scene feature

sets to their model feature set was that presented by Van Wamelin et al. (2004).

The authors compared the di�erent point pattern matching algorithms developed up

to 2004, and demonstrated how their algorithm improved e�ciency and accuracy in

the registration process (Van Wamelen et al., 2004). The algorithm accommodates

rotation, scale and translation variations and importantly is robust to missing data

and/or introduced artifacts. These qualities were in�uential in the selection of the

algorithm for this study.

The algorithm works by �rstly attempting to �nd transformation factors that

match feature sets based on a local area (typically central to the model feature set)

(Van Wamelen et al., 2004). That is, factors that will transform a subset of points
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in a scene feature set to a subset of corresponding points in the model feature set.

If transformation factors are found that satisfy a threshold condition, then these

factors are applied to the entire feature set for that scene.

However, transformation factors that provide the most accurate alignment based

on a local area, do not necessarily result in the most accurate alignment for the

entire feature set. Therefore, global error minimisation is applied to re�ne the local

transformation factors (by making minor adjustments), with the aim to improve

alignment of the scene feature set with the model feature set on a global basis.

To demonstrate the concept of local area alignment, a simpli�ed example is

provided in Figure 5.5. Also, Table 5.6 provides the actual coordinates for the

model and scene image points (accurate to 2 decimal places). There are 6 images

(a to f) in Figure 5.5, where the model image (a) contains 4 hypothetical points

(p, q, r, s). The central most point q forms 3 dashed line segments p̄q, q̄r, and q̄s

with the other 3 points (p, r, s). Line segments in the model image are dashed to

distinguish them from those in the scene images. The red coloured line segment p̄q

is designated the primary line segment upon which comparison, with line segments

in the scene images, is based during the alignment process.

Images (b), (c), (d), and (e) are all instances of the same scene image, where the

4 hypothetical points (from the model image) have been transformed by rotation,

scale and translation factors. The transformation factors applied to the model image

points to relocate them to their coordinates in the scene images were a rotation

angle of θ = −900, a scale factor of s = 0.95, and translation factors of x = 40

and y = −30. It should be noted that these transformation factors were nominated

purely to provide a demonstration of local area alignment; they were not meant to

approximate a genuine case of local area alignment.

Each of the four scene images (b, c, d, and e) illustrate the process of determining

3 line segments from one point in the scene image to the other 3 points in the same

image. Each image does this from a di�erent starting point. For example, image

(b) performs the task from the point p (192.0, 60.25), image (c) from the point q

(192.0, 136.25), image (d) from the point r (120.75, 174.25), and image (e) from the

point s (263.25, 174.25) (refer Table 5.6).
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Point Model Data Set Starting Point In
Scene Data Set

q 160.0 175.0 192.0 136.25
p 240.0 175.0 192.0 60.25
r 120.0 100.0 120.75 174.25
s 120.0 250.0 263.25 174.25

Table 5.6: Local Area Alignment Coordinates

The alignment process involves comparing each of the line segments (in a scene

image) with the primary line segment in the model image. For example in Figure 5.5

image (b), line segments p̄q, p̄r, and p̄s are compared (in turn) with the primary line

segment p̄q in the model image. Firstly, transformation factors are determined that

align p̄q in the scene image with p̄q in the model image. All points in the scene image

are transformed according to the determined factors, and the distance between all

transformed scene image points and the model image points is calculated (according

to Equation 5.2 on page 267). If that distance meets a threshold condition, then a

candidate set of transformation factors is indicated and they (and the corresponding

distance) are recorded. If not, they are discarded. The same process is applied to

the other two line segments p̄r and p̄s in image (b).

It should be clear from visually comparing image (b) with image (a) that no

transformation factors successfully align the two images, based on the comparison

between the three line segments p̄q, p̄r, and p̄s in image (b) and the primary line

segment in image (a).

The same process is applied to the other scene images (as demonstrated in Figure

5.5 images (c), (d), and (e)), where for each image the starting point (for determining

the line segments) is di�erent.

At the completion of this process, the candidate transformation factor set as-

sociated with the smallest distance is nominated the `winning' set, as the smallest

distance between points indicates the closest alignment. These transformation fac-

tors are applied to all points in the scene image, and should result in the most

accurate alignment (on a local basis).

In the example illustrated in Figure 5.5, image (c) should provide the winning

transformation factors. To demonstrate this, image (f) shows the model image and



266 CHAPTER 5. EXPERIMENTAL METHODS

imposes image (c) on top of it so that the correspondence is evident (taking into

consideration that the transformation factors required to align the two images have

not been applied in image (c). If they had been, the imposed image would cover the

model image).

The following sub-sections explain in greater detail (with the use of formulae

and algorithms) the alignment process. A description of the software that was de-

veloped in the C programming language is presented. Slight modi�cations, to the

Van Wamelin et al (2004) algorithm, were made during implementation to accom-

modate di�erent data storage methods within the program. This did not change the

method of the algorithm, but was done merely for implementation purposes. Also,

some preliminary steps (in relation to the storage of feature sets and the calculation

of the threshold) were required to facilitate the registration process.

Feature Set Storage

The implementation stored information about each point of a feature set in a record

along with other information used during the registration process. An array of such

records was used to store the information about all points in a feature set. As

the program was developed using the C programming language, the data structure

called a `struct' was used for each record.

The struct elements were:

1. x - the x coordinate for the current point.

2. y - the y coordinate for the current point.

3. pointNumber - the point number of the current point in the feature set. The

point number started at the number 0 to correspond with the index number

of the array storing the structs. In C, array elements start at index 0.

4. type - the minutia type of the current point.

5. distance[] - the distances from the current point to all other points in the

feature set, stored in an array. Each distance dj was calculated as the Euclidean

distance (refer Equation 5.2) between the point ppointNumber and the remaining
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points in the same feature set (pj,pj+1,. . .,pn−1 in n-space). The distances were

sorted in ascending order and stored in successive array elements.

dj =
√

(pi − pj)2 (5.2)

where j = 0, 1, . . . , n and i 6= j.

6. indices[] - the point numbers of the points in distance[] (struct element 5).

Stored in array elements according to the their corresponding sorted distances.

7. size - the size of the arrays used for struct elements 5 and 6.

8. isMatched - a boolean sentinel value to indicate when the current point gets

matched to a point in another feature set. Used during the alignment process,

this element is initialised to �1, and is set to 1 if the current point gets matched.

9. matchPoint - the point number of the point in the other feature set that the

current point gets matched to.

10. matchDistance - the Euclidean distance to the point that the current point

gets matched to.

Threshold

A threshold value was used to determine whether two points from di�erent feature

sets were within an acceptable proximity to each other. Van Wamelin et al., (2004)

suggested that if all model feature set points are encompassed by an imaginary

circle, then it seems reasonable to assume that the average distance to the nearest

neighbour of a given point is within a smaller circle calculated in relation to the

radius of the encompassing circle and the number of points in the model feature set

(refer Equation 5.3).

r

2×
√
n

(5.3)

where r is the radius of the imaginary circle encompassing all points in the model

feature set, n is the number of points in the model feature set.
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It also seems reasonable that a constant fraction of this value could be used to

estimate an acceptable threshold of proximity (Van Wamelen et al., 2004). This can

be calculated according to Equation 5.4.

t = λ

(
r

2×
√
n

)
(5.4)

where t is the calculated threshold, r is the radius of an imaginary circle encom-

passing all points in the model feature set, n is the number of points in the model

feature set, and λ is a matching factor.

The nature of data in this experiment demonstrated a substantial variation in the

value for n (from a minimum of 18 to a maximum of 69 across the 90 participants).

That is, the distribution of points across the model feature sets was disparate.

Intuitively, it seems appropriate to allow the threshold for a sparse distribution to

be greater than the threshold for a dense distribution. That is, it seems acceptable

to allow two points to be further apart in a sparse distribution than in a dense

distribution, and still meet the threshold condition. Conversely, it seems acceptable

to require two points to be closer together in a dense distribution than in a sparse

distribution, in order to meet the threshold condition.

For example, in a sparse distribution (such as 18) relaxing the acceptable distance

between two points seems appropriate, as the points are further apart than they are

in a dense distribution (such as 69). Similarly, tightening the acceptable distance in

a dense distribution (such as 69) seems appropriate, as the points are closer together

than they are in a sparse distribution (such as 18).

Therefore, because of the di�erences in the density of distributions in this exper-

iment, it was considered advisable to adjust the value of λ in relation to the value

of n. Accordingly, λ was adjusted (in relation to n) as follows:

If n 6 20, λ = 0.535

If 20 < n < 50, λ = 0.428

If n > 50, λ = 0.321
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The value 0.428 for λ was the suggested value by Van Wamelan et at., (2004).

The other two possible values for λ are equidistant from the suggested value of

0.42810 and were determined by trial and error. It can be seen that the values for λ,

when applied to the calculation of the threshold, re�ect the reasoning in the above

discussion.

Given Equation 5.4 and the above inequalities, the threshold between two points

is likely to be greater if n was less than 21, than it would be if n was greater than

49. Conversely, the threshold between two points is likely to be smaller if n was

greater than 49, than it would be if n was less than 21. Of course, the value for r

may also in�uence the outcome.

The following two sub-sections explain the alignment process in detail. Algo-

rithms 5.2, 5.3, and 5.4 have also been provided to help understand the implemen-

tation.

For the Model Feature Set

• Determine, sort and store distances (and corresponding point numbers) in the

appropriate arrays for all points in the model feature set M , as previously

described for struct elements 5 and 6.

• Randomly select 5 points within the central region of M . Each of these 5

points were used as a starting point for the alignment process, in case one or

more of these 5 points do not result in an acceptable alignment. Algorithm

5.2 demonstrates the practical method used to implement the selection of the

5 points. The algorithm �rstly used the modulus operator to determine if the

number of points in the model feature set M was even or odd11.

If there were an even number of points in the model feature set, that number

divided by 2 obtained the central point, and the point number of that central

point was stored in the random[] array at index 0 (Steps 1�2 in Algorithm

5.2). If there were an odd number of points in the model feature set, that

10Plus or minus 0.107
11The modulus operator determines the remainder of an integer or whole number division. There-

fore, if any integer when divided by 2 results in a remainder of 0, then that integer is even (otherwise
it is odd).
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number subtract 1 and then divided by 2 obtained the approximate central

point, and that point number was stored in the random[] array at index 0

(Steps 3�4 in Algorithm 5.2). Once obtained, this point number was used to

determine four other points in the region approximately central to M (Steps

6�9 in Algorithm 5.2).

Algorithm 5.2 Selection of 5 Random Points Central to M

Let mlength be the number of points in the model image feature set M .
Let random be a 5 element array.
Let the symbol % signify the modulus operator.

1: If mlength % 2 == 0
2: random[0]← mlength/2
3: Else
4: random[0]← (mlength− 1)/2
5: End If-Else
6: random[1]← random[0]− 1
7: random[2]← random[0] + 1
8: random[3]← random[0]− 3
9: random[4]← random[0] + 3

For Each Scene Set

• Determine, sort and store distances (and corresponding point numbers) in the

appropriate arrays for all points in the current scene feature set S, as previously

described for struct elements 5 and 6.

• Determine candidate local transformation factors that accurately transform

a small subset of points in S to a corresponding subset of points in M , as

described below12:

� Firstly, access the randomly selected point random[0] inM and assign to

p (Step 2 in Algorithm 5.3); access the 6th closest point to it13 and assign

to a to determine the line segment p̄a in M (Step 4 in Algorithm 5.3).

Next, access the �rst point in S and assign to q (Step 6 in Algorithm

12The description makes reference to steps listed in Algorithm 5.3 on page 276 (Steps 1 to 40).
13The reason for accessing the 6th closest point to p is that the distance from p to its 6th closest

neighbour should determine a line segment long enough to allow for the calculation of reasonably
accurate local transformation factors. Points closer to p may not provide the same accuracy.
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5.3); access the 6th closest point to it14 and assign to b to determine the

line segment q̄b in S (Step 8 in Algorithm 5.3). Then determine local

transformation factors s (scale), θ (angle), tx (translation along the x

axis), and ty (translation along the y axis) between the two line segments

p̄a and q̄b (Steps 9 to 14 in Algorithm 5.3) according to Equations 5.5,

5.6, 5.7, and 5.8.

s =

√
(ax− px)2 + (ay − py)2√
(bx− qx)2 + (by − qy)2

(5.5)

θ = atan2(ay − py, ax− px)− atan2(by − qy, bx− qx) (5.6)

tx = px− qx× s× cos(θ) + qy × s× sin(θ) (5.7)

ty = py − qx× s× sin(θ)− qy × s× cos(θ) (5.8)

where x and y are the associated x and y coordinates of the points p, a, q, b.

� By iterating from the 6th to 10th (inclusive) closest points to p in M ,

5 di�erent line segments p̄a were determined. As there were 5 possible

random points for p, there were 25 line segments determinable inM . Also,

by iterating from the 6th to 10th closest points to q in S, 5 di�erent

line segments q̄b were determined. The total number of line segments

determinable in S was dependent on the number of points in S. For

example, if S contained 30 points, the number of line segments q̄b would

be 150. A di�erent set of local transformation factors s, θ, tx, ty were

determined between all successive line segments q̄b in S and all successive

line segments p̄a in M . In the above example, the total number of local

transformation factor sets calculated would be 3,750 (25x150).

� Obviously only a few of the local transformation factor sets will result in

accurate alignment. In order to determine candidate local transformation

factor sets resulting in an acceptably accurate registration, the method

suggested by Van Wamelin et al, (2004) was adopted. Firstly, the local

14Again, the reason for accessing the 6th closest point to q is to determine a line segment long
enough to allow for the calculation of reasonably accurate local transformation factors.
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transformation factors were restricted to lie within the boundaries listed

in Table 5.7 (also refer to Algorithm 5.3 Step 15). Because data collection

was supervised, it was con�dently concluded that transformation factors

outside the the ranges speci�ed in Table 5.7 could not realistically achieve

accurate registration. The scale factor is a�ected by the pressure applied

when the �ngertip comes into contact with the scanner surface. From

observation of some preliminary registration attempts, the limits provided

in Table 5.7 were determined. For the angle θ, supervised data collection

meant that participants should not have deviated from the vertical (in

relation to the scanner surface) by more than 300 in either direction. For

the vertical and horizontal translation, if participants deviated by more

than the speci�ed ranges then one quarter of the �ngerprint would not

have been captured (in which case registration would have been very

doubtful). In any of these cases, if any factor was outside the ranges

speci�ed in Table 5.7, then that local transformation factor set was not

considered further.

FACTOR LOWER BOUNDARY UPPER BOUNDARY

s 0.94 1.06
θ −300 300

tx −80 80
ty −87.5 87.5

Table 5.7: Boundary Limits For Candidate Transformation Factors

� If the local transformation factors s, θ, tx, ty met the above restrictions,

the closest nine points to q in S (and q itself) were transformed according

to Equations 5.9 and 5.10 (Steps 16 to 24 in Algorithm 5.3).

qx = tx+ px× s× cos(θ)− qy × s× sin(θ) (5.9)

qy = ty + px× s× sin(θ) + qy × s× cos(θ) (5.10)

where p is the current point in M , q is the current point in S, x and y

are the associated x and y coordinates of the associated points p and q.
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� The number of matching points m were then determined between the 10

points in S just transformed and the current point p in M and its closest

nine neighbours (Step 20 in Algorithm 5.3). Matching criteria was based

on two points meeting the threshold condition (t) calculated according to

Equation 5.4.

� If there were six points matching between the two subsets of M and S

(using the matching probability of ρ = 0.6 suggested by Van Wamelin

et al, (2004)), it was considered that the local transformation factor set

was a de�nite candidate set, in which case the average distance was cal-

culated (Steps 26 and 27 in Algorithm 5.3). The average distance ad was

calculated between all points in the subset of M and subset of S, where

distances were determined according to Equation 5.2.

� If the average distance ad was less than a required distance rd (initially

rd ← 100015), the required distance was updated to that of the average

distance and the local transformation factors were stored (Steps 28 to 31

in Algorithm 5.3).

� At this point, only the local transformation factors that achieved the

best alignment were stored. The entire process was repeated to access

the next randomly selected point in the random[] array (in M), which

was assigned to p (Step 2 in Algorithm 5.3). This was repeated until all

5 random points had been accessed.

• At the end of the previous processing, only the one local transformation factor

set that resulted in the lowest required distance was stored for use in further

processing.

• If the required distance rd was less than 1000 (Step 41 in Algorithm 5.3),

a de�nite candidate local transformation factor set had been found and was

15The reason for this initial required distance can be explain as follows. Because of the resolution
of the scanned �ngerprint image, there were 320 units along the x axis, and 350 along the y axis.
This results in 112,000 possible unit intersections. As the local alignment was conducted for 10
points in both feature sets, 1000 divided 10 would mean that (on average) each subset point (in
S) needed to be within 100 units of its prospective matching subset point (in M). This seemed a
reasonable expectation when attempting to determine candidate local transformation factor sets.
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applied to all points in S. A global error minimisation was then applied to all

points in S (Steps 42 to 46 in Algorithm 5.3).

� Apply candidate local transformation factors s, θ, tx, ty to the entire scene

feature set S.

� Determine the number of matching points m between the entire scene

feature set S and the entire model feature set M . Matching criteria

was based on two points meeting the threshold condition (t) calculated

according to Equation 5.4, as applied to all points in scene set S (trans-

formed by the local transformation factors) and all points in the model

feature set M .

� Apply global error minimisation to s, θ, tx, ty using the ranges speci�ed

in Table 5.8 (refer Algorithm 5.4).

FACTOR LOWER BOUNDARY UPPER BOUNDARY INCREMENT

s 0.98 1.02 0.005
θ θ − 50 θ + 50 0.250

tx tx− 5 tx+ 5 0.25
ty ty − 5 ty + 5 0.25

Table 5.8: Global Adjustment Ranges

� Determine again the number of matching points m between the entire

scene feature set S and the entire model feature set M16.

� Output the following information to three uniquely named �les (per par-

ticipant):

1. The adjusted coordinates (and their associated attributes) for the

scene feature set S. File names were preceded by `m' and numbered

from 001 to 090, with a `.txt' extension (i.e. m001.txt, m002.txt, . . .,

m090.txt).

16Matching criteria was again based on two points meeting the threshold condition (t) calculated
according to Equation 5.4, as applied to all points in scene set S (after global error minimisation)
and all points in the model feature set M .
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2. The index numbers of points in the scene feature set that were

matched to points in the model feature set. A full description of

this output format is provided in the next section 5.5.5. File names

were numbered from 001 to 090, with a `.tab' extension (i.e. 001.tab,

002.tab, . . ., 090.tab).

3. Information related to local transformation including the local trans-

formation factors along with the resultant number of matches (m)

and the average distance (ad) between the two feature sets based on

those factors. Also, the adjusted transformation factors after global

error minimisation, the resultant number of matches (m) and the

average distance (ad) based on those factors. File names were num-

bered from 001 to 090, with a `.err' extension (i.e. 001.err, 002.err,

. . ., 090.err).

• If the required distance rd was greater than or equal to 1000, a candidate

local transformation factor set had not been found. In this case, no further

processing was performed for the current scene feature set as registration was

unlikely. Recall from section 5.5.2, that feature information from all �nger-

print scans (both representative and non-representative) were recorded. It was

very possible that a small number of the non-representative scans (from each

participant) may not have been accurate enough to be registered. If so that

scene feature set was removed from the experiment. As there were in excess

of the required representative scans available, this was considered a better op-

tion than attempting further processing in order to align the scene feature sets

corresponding to non-representative scans17.

17As testimony to the accuracy of the Digital Persona U.ARE.U 4000 optical �ngerprint scanner
and the Veri�nger (SDK) (feature extraction software), this particular scenario occurred rarely
during alignment process in this experiment.
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Algorithm 5.3 Fingerprint Feature Registration Method
Let slength be the number of points in the scene feature set S.
Let index, i, j, k, h, l be loop control variables for accessing array elements.
Let pIndex store the point number of the current point p in M , successively accessed from
random[]; aIndex successively store the point numbers of the 6th to 10th closest points to the
current point p in M ; qIndex successively store the point numbers for all points q in S; bIndex
successively store the point numbers of the 6th to 10th closest points to the current point q in S.
Let ρ = 0.6, where ρ is the matching probability suggested by Van Wamelin et al, (2004).
Let m be the number of matching points between two sets (or subsets) of points in M and S that
meet the threshold condition (t).
Let ad be the average distance between the two entire feature sets M and S.
Let rd← 1000 be the initial minimum required average distance between two feature setsM and S.

1: For index = 0 to 4 do
2: pIndex← random[index]
3: For i = 5 to 10 do
4: aIndex← p[pIndex].indices[i]
5: For j = 0 to slength do
6: qIndex← q[j].pointNumber
7: For k = 5 to 10 do
8: bIndex← q[qIndex].indices[k]

9: s =

√
(p[aIndex].x− p[pIndex].x)2 + (p[aIndex].y − p[pIndex].y)2√
(q[bIndex].x− q[qIndex].x)2 + (q[bIndex].y − q[qIndex].y)2

10: anglePA← atan2(p[aIndex].y − p[pIndex].y, p[aIndex].x− p[pIndex].x)
11: angleQB ← atan2(q[bIndex].y − q[qIndex].y, q[bIndex].x− q[qIndex].x)
12: θ ← anglePA− angleQB
13: tx← p[pIndex].x− q[qIndex].x ∗ s ∗ cos(θ) + q[qIndex].y ∗ s ∗ sin(θ)
14: ty ← p[pIndex].y − q[qIndex].x ∗ s ∗ sin(θ)− q[qIndex].y ∗ s ∗ cos(θ)
15: If (0.94 6 s 6 1.06 AND θ 6

∣∣300
∣∣ AND tx 6 |80| AND ty 6 |87.5|)

16: For h = 0 to h < 9 do
17: For l = 0 to l < 9 do
18: q[k].x← tx+ p[h].x ∗ s ∗ cos(θ)− q[k].y ∗ s ∗ sin(θ)
19: q[k].y ← ty + p[h].x ∗ s ∗ sin(θ) + q[k].y ∗ s ∗ cos(θ)
20: Determine m
21: l← l + 1
22: End l For
23: h← h+ 1
24: End h For
25: End factors If
26: If (m > ρ ∗ 10)
27: Calculate ad (using current transformation factors s, θ, tx, ty)
28: If (ad < rd)
29: rd← ad
30: Store the current transformation factors s, θ, tx, ty
31: End ad If
32: End m If
33: k ← k + 1
34: End k For
35: j ← j + 1
36: End j For
37: i← i+ 1
38: End i For
39: index← index+ 1
40: End index For
41: If (rd < 1000) (a candidate set of local transformation factors has been found)
42: apply stored local transformation factors s, θ, tx, ty to the entire scene feature set
43: calculate m
44: apply global error minimisation to s, θ, tx, ty (refer Algorithm 5.4 and Table 5.8)
45: re-calculate m
46: output to three separate uniquely named �les
47: Else
48: no candidate set of transformation factors has been found � output appropriate message
49: End rd If
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Algorithm 5.4 Global Error Minimisation

Let i, j, k, l be loop control variables for incrementing successive transformation
factor values.
Let ad be the average distance between the two entire feature sets M and S.
Let rd ← 1000 be the initial minimum required average distance between two
feature sets M and S.

1: For i = (θ − 50) to (θ + 50) do
2: rotate all points is S by factor i
3: For j = 0.98 to 1.02 do
4: scale all points in S by factor j
5: For k = (x− 5) to (x+ 5) do
6: translate the x coordinates of all points in S by factor k
7: For l = (y − 5) to (y + 5) do
8: translate the y coordinates of all points in S by factor l
9: Calculate ad
10: If (ad < rd)
11: rd← ad
12: store the current transformation factors i, j, k, l
13: End If
14: l← l + 0.25
15: End l For
16: k ← k + 0.25
17: End k For
18: j ← j + 0.005
19: End j For
20: i← i+ 0.250

21: End i For
22: Transform all points in S by factors i, j, k, l.

By the processes just described, the transformations were conducted for each

participants scene feature sets, aligning them with their model feature set. The

aligned feature data (as well as the transformation factors and other information)

were written to the �les speci�ed.

5.5.5 Feature Selection

As discussed in section 5.4.4, careful selection of metrics can be adopted to enhance

ANN training. In relation to keystroke dynamics, the reason for adopting such

steps was because of the variability of data for that biometric characteristic. For

�ngerprint data, accurately registered features should not exhibit such degrees of

variability.
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However, the keystroke dynamics data consisted of a consistent number of metrics

per sample (for all participants). That is, there were no missing or extra metrics

in any sample. This facilitated metrics selection for the keystroke dynamics data,

and simpli�ed the process of determining input vectors of consistent length for ANN

training and testing.

For �ngerprint data processed to this stage (i.e. registration), the same could

not be achieved so simply. The number of features extracted from a participant's

scans typically vary from sample to sample. Any speci�c feature may or may not

have been detected in any particular sample, due to di�erent �nger positioning and

pressure and/or the presence of moisture, dirt or other environmental factors.

Also, the number of features extracted from �ngerprint scans typically vary from

participant to participant. This is because each participant may have a di�erent

number of actual features (and a di�erent number of the two types of features). For

example, one participant may have 22 minutiae and another may have 57. Even

if more than one participant had 22 minutiae, one may have had 17 terminating

minutiae and 5 bifurcating minutiae while the other may have had 15 terminating

minutiae and 7 bifurcating minutiae.

Taking the above two points into consideration, formulating ANN input vectors

becomes a di�cult challenge (if consistency of input vector length is to be main-

tained). Therefore, it was considered desirable that (as with keystroke dynamics)

the �ngerprint feature information be further processed to provide samples of a con-

sistent length also. So, feature selection was performed to ensure that each sample

for each participant had the same number of features. Importantly, this would also

be bene�cial for the next phase of the experiment (the fusion of keystroke dynamics

data and �ngerprint feature data).

Before determining how many features should be selected, it was important to

determine which local feature attributes to utilise. Typically, the x and y coordinates

and the orientation are the attributes used in minutiae matching algorithms (Ratha

et al., 1996). With the x and y coordinates considered as 2 separate attributes, this

results in 3 attributes.
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However, because the primary objective of this experiment was heavily based

on feature level fusion of the two data sources, it was considered that the use of

all available local feature attributes might be more distinctive (and possibly more

bene�cial to the pattern recognition process) than just the 3 typically used.

Thus there were 6 available attributes for each local feature (refer section 5.5.3).

As far as is known, no other study has incorporated these 6 local feature attributes.

Once the decision was made to utilise all available local feature attributes, it was

decided to select 8 features per sample for the experiment. Typically, �ngerprint

matching for law enforcement (the most stringent type of application) requires a

12 point match to be considered incontrovertible18. However, as all 6 attributes

per local feature were being utilised (instead of just 3) a quantity of 8 features was

considered adequate for this experiment (which is in the context of computer user

authentication). Recall that there were 24 metrics per sample in the keystroke dy-

namics data; it was therefore considered that using more than 8 �ngerprint features

(which results in a total of 48 metrics�8 features with 6 attributes) could unduly

a�ect �ndings when the two data were combined in phase 3 of the experiment.

For the same reasons expressed in section 5.4.4, it was determined to also in-

clude some global information about each �ngerprint. As previously mentioned, the

Veri�nger Software Development Kit (SDK) 4.2 Visual C++ library allowed for the

extraction of only two global features: the ridge count and the minutiae count (re-

fer section 5.5.3). However, it was considered that distinguishing between the two

di�erent types of minutiae (that is, ridge termination and ridge bifurcation) may be

advantageous. Therefore, a total for the two types of minutiae was also recorded as

global data. This resulted in 4 global metrics19 per sample; added to the 48 local

feature attributes, a total of 52 metrics per sample was obtained.

After registration, and deciding upon the metric composition for each sample,

the selection of local features was conducted (for each participant). This process

was based on the following criteria:

18In the USA, a 12 point match is required: in the UK, a 16 point match is required: in France,
a 17 point match is required (Hughes and Green, 1991).

19The ridge count, the minutiae count, the number of ridge terminations, and the number of
ridge bifurcations.
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1. Sample Selection: determine the 140 samples with the largest quantity of

local features. As indicated in section 5.5.2, data from all scans was recorded

in a participants' raw data �les. The task here was to select 140 (for each

participant) corresponding to their most `representative' scans.

2. Feature Selection: determine the common local features (i.e. features occurring

in all 140 selected samples for a participant). It was identi�ed that samples

consisted of varying quantities of common local features, and the quantity of

local features common to all samples may have numbered greater or less than

the required 8. Wherever possible, the selection of 8 local features common to

all 140 samples was desired. If any given sample had less than the 8 required

common local features, the `missing' feature (or features) from that sample

had 0 assigned to each attribute.

To achieve point 1, the `.tab' �les output by the registration process were utilised.

A `.tab' �le contained the same number of lines as there were feature sets or samples

for a particular participant. The number of �elds per sample was the same as the

number of features in the model feature set. At the end of the registration process for

a scene feature set, the index number of a scene feature point that was successfully

matched to a model feature point was written to the �le, in a position relative to

the index position of the model feature point it was matched to. If no match in the

scene feature set was found for a point in the model feature set, a −1 was written

in a position relative to the index position of the model feature point.

Table 5.9 provides an example of three lines from a `.tab' �le for one participant.

The �rst row labels the column numbers. The second row (labeled Model) contains

the index numbers for the model feature set, and indicates the order of each point.

The remaining rows show the output for three di�erent scene feature sets after

registration.

For example, the row labeled Scene 1 at column 8 shows index number 7 of that

scene feature set matching with index number 7 of the model feature set. The row

labeled Scene 3 at column 8 shows a −1, indicating that there was no point in this

scene feature set that matched that point in the model feature set. Column 10 shows
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that index 9 in the Scene 1 row, index 10 in the Scene 2 row, and index 14 in the

Scene 3 row matched to the same feature at index 9 of the model feature set.

It can be seen in Table 5.9, that eleven points in all three scene feature sets

matched with their corresponding points (by location, rather than number) in the

model feature set, even though some correspondences indicate di�erent point num-

bers (particularly for Scene 3). These occurred in columns 2, 3, 4, 5, 6, 7, 9, 10, 11,

12, 13.

Column 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Model 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Scene 1 -1 1 2 3 4 5 6 7 8 9 11 12 13 15 16 17 18 19 20
Scene 2 0 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 -1 19
Scene 3 4 6 7 9 11 8 10 -1 12 14 15 16 17 -1 -1 -1 -1 -1 -1

Table 5.9: Example Output From `.tab' File

This data in the `.tab' �les were used to rank all feature sets per participant.

As each row in the '.tab' �le related to a scene feature set, a tally of the number

of positive numbers on each row was obtained. The tally for each row represented

the number of matching points in both the scene feature set and the model feature

set. The tallies were ranked in descending order such that the feature set with the

highest number of matching points was ranked highest. The feature set with the

second highest number of matching points was ranked second highest, and so on.

Using the examples provided in Table 5.9, the rows labeled Scene 1 and Scene 2

would be ranked highest with 18 matching points, while Scene 3 would be ranked

lowest with 12 matching points. Note that the association between the tallies and

their corresponding feature sets (or samples) was maintained during ranking. Once

ranked, the top 140 samples were used for the remainder of the experiment; this

ful�lled the requirement for the correct number of samples (per participant).

To achieve point 2 (selection of the appropriate 8 common local features from

each sample) the data in the `.tab' �les were again utilised. Firstly, a tally of

the number of positive numbers in each column was obtained. The tally for each

column represented the number of feature points present across all 140 samples

(selected as described above). The tallies were ranked in descending order such that
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the feature that occurred most frequently was ranked highest. The feature that was

next highest in frequency was ranked second highest, and so on.

The features that were ranked in the top 8 (according to the column tallies) were

the features selected for the experiment. If any of the selected features did not occur

in any particular feature set (or sample), the value 0 was assigned for that feature's

attributes in that sample only. This occurred in a number of samples for a number of

participants. Table 5.10 lists the participants who had a number of missing features

in their selected feature sets (or samples). For all other participants, the common 8

features were selected from each of their 140 feature sets (samples). Note that all

those participants listed in Table 5.10 had multiply samples with 1 feature missing

(as is evident in column 2), and two participants (19 and 80) had multiple samples

with 2 features missing (as is evident in column 3).

PARTICPANT NUMBER OF SAMPLES
WITH 1 FEATURE

MISSING

NUMBER OF SAMPLES
WITH 2 FEATURES

MISSING

3 4 �
5 29 �
14 10 �
16 4 �
19 43 8
23 20 �
26 9 �
75 6 �
76 24 �
80 31 2
81 40 �
90 15 �

Table 5.10: Participants with Unmatched Features After Selection

Once selection was complete, the metrics were normalised according to the

min/max method (Indovina et al., 2003). Normalised metrics were then written

to uniquely named �les for each participant (according to their participant num-

ber). File names were preceded by `m', with a `.txt' extension (m001.txt, m002.txt,

. . ., m090.txt). Note these �les were written to a di�erent directory than that used

to store the registration output.
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5.5.6 Final Analysis Procedure

There were 90 participants' metric data �les (consisting of 140 samples; 52 metrics

per sample) for this phase of the experiment. Rather than randomly selecting a

new set of training group members for this phase of the experiment, the 50 training

group members that were randomly selected in the keystroke dynamics �nal analysis

procedure (refer section 5.4.5) were also allocated to the training group for this phase

of the experiment. This was done because participants �les were numbered, and data

�les from the �rst two phases needed to be paired (i.e. have the same numbered �le

names) for the data fusion phase. The experiment then proceeded with the training

and testing phases.

5.5.6.1 Training Phase

Each training group member had an input �le created for training an ANN to

recognise their pattern; that is, one ANN per training group member. The selection

of samples to make up these �les followed a similar process to that used for the

keystroke dynamics.

However, there was a slight di�erence. The process would normally select from

all available 140 samples. As explained in the previous section 5.5.5, some samples

had 1 or 2 points missing as a result of the registration and selection processes. In

these cases, a 0 value was entered for the metrics corresponding to the attributes of

the missing points. It was therefore deemed advisable to disallow those samples from

random selection for training and validation purposes (though they were still eligible

for testing purposes), because they may not be considered a truly `representative'

sample (compared to a sample with no metrics missing).

With this exception in mind, the training �le for each training group member

was generated as follows:

• 30 samples (of the 140 available) were randomly chosen from that member's

data �le, for the positive training case (provided a metric value of 0 for the

minutia type attribute was not present20).

20Recall that a value of 1 designated a ridge termination and a value of 2 designated a ridge
bifurcation. A value of 0 denotes a missing feature.
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• 1 sample was randomly chosen from all other training group members data

�les, for the negative training case (provided a metric value of 0 for the minu-

tia type attribute was not present). As there were 49 other training group

members data �les, this meant 49 samples.

As explained in section 5.4.5, positive and negative case training samples are

used to help train the ANN to discern the intended pattern.

Each training group member also had a �le created for cross validation during

the training process. These were generated as follows:

• 10 samples were randomly chosen for that member (provided a metric value of

0 for the minutia type attribute was not present). These samples were chosen

from the same data �le from which the 30 training samples were chosen (but

excluding the training samples).

The reasons for the number of samples for their respective purposes were again

explained in section 5.4.5. With 40 samples removed and used for training purposes,

this meant that there were 100 remaining samples per participant set aside for testing

purposes (refer section 5.5.6.2).

Therefore, each training group members input �le (for training) consisted of 79

input samples (30 for the positive training case plus 49 for the negative training

case), with 52 metrics per sample. There were 50 such training input �les (one for

each participant). There were also 50 validation �les (consisting of 10 samples, with

52 metrics per sample); one for each training group member, corresponding to each

of the training �les.

The objective of the training phase was to obtain a registered template associated

with each training input �le (i.e. for each participant). For the experiment, the back

propagation Arti�cial Neural Network (ANN) architecture was used. When training

the ANNs, the 52 metrics (per sample) from the training input �le became the input

layer nodes for the ANN.

The number of hidden layer nodes was varied from 2 to 26 (inclusive), for each

training input �le. This was done because there is no standard rule that speci�es

how many hidden layer nodes should be used, and so the most appropriate ANN
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con�guration for each member must be determined by trying di�erent con�gura-

tions and seeing which one performed best. The reason for the upper limit of 26

hidden layer nodes was based on the known accuracy of �ngerprint data. After some

preliminary trial and error testing, it was considered acceptable to utilise an upper

limit of half the number of input layer nodes to re�ect this con�dence (i.e. 52 input

layer nodes divided by 2).

As a result there were 1,250 individual ANNs trained (50 x 25). The ANN

training phase for �ngerprint data (with the multiple con�gurations just described)

was conducted using a desktop computer with 2 Ghz AMD processor and 512MB

RAM. Training took 12.5 days (i.e. approximately 6 hours per participant).

Once training was completed, all ANN con�gurations were subjected to pre-

liminary assessment to determine the single con�guration (for a participant) that

returned the least number of false acceptances (Type I errors) and false rejections

(Type II errors). This process was performed manually because the determination

required assessing the trade-o� between the two error types.

Basically, the con�guration that returned the least number of Type I errors,

whilst returning Type II errors at an acceptable level was selected. The same pro-

cess was applied for all training group members, and the weights of the ANN con�g-

urations (thus selected) were used as registered templates from that point onwards.

These were written to a �le (such that the participant number and number of hid-

den layer nodes were indicated in the �lename, and given a `.w' extension) and

subsequently used during the testing phase.

5.5.6.2 Testing Phase

Each training group member had an input �le created for testing their trained ANN.

The testing �le for each training group member was generated as follows:

• 100 samples (i.e. 140 less those samples used in the training phase) for the

member being tested were used for the positive testing case.

• 100 unused samples from all other training group members were used for the

negative testing case.
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• 140 samples from all non-training group members were used for the negative

testing case.

Positive case testing examines whether the ANN correctly recognises samples

belonging to the member that it has been trained to recognise (samples it has not

seen during training). Non-recognition of any of these 100 positive case samples are

instances of Type II errors (false negatives) (refer Chapter 6 section 6.2).

Negative case testing examines whether the ANN correctly rejects samples as

belonging to someone other than the member it has been trained to recognise.

Recognition of any of these negative case samples are instances of Type I errors

(false positives) (refer Chapter 6 section 6.2).

So for each training group member, the samples from each relevant �le (in the

order listed above) were read and written to their testing input �le. Therefore, each

training group member had a testing input �le consisted of 10,600 input patterns

(i.e. 100 for the member being tested, plus 100 for each of the other 49 training

group members, plus 140 for each of the 40 non-training group members), with 52

metrics per sample. There were 50 such testing input �les (one for each training

group member). The results of the testing phase are provided in Chapter 6, and a

discussion of these results is presented in Chapter 7.

5.6 Feature Level Data Fusion

5.6.1 Introduction

As discussed in Chapter 2 sections 2.3.1.2 and 2.3.2.1, the concept of feature level

data fusion consists of utilising the features from multiple sources of data. This

is done to take advantage of the distinctive features from each source; to enhance

the quality and richness of data for improvement in accurate and robust veri�ca-

tion. Also discussed was the possible requirement for pre-processing (for example,

data alignment) and feature selection. As discussed in sections 5.4.4 and 5.5.4,

these requirements have been taken into consideration in the �rst two phases of this

experiment, with a view to facilitating feature level data fusion (the third phase).
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However, the appropriate data fusion paradigm is another important issue that

needs consideration. There are three possible paradigms to consider when combining

multiple sources of data (refer Chapter 2 section 2.3.1.1). These are the competitive,

complementary, and cooperative approaches.

The competitive approach involves the individual data sources competing with

each other. The data source that best represents an object/entity/identity is utilised

for the purpose under consideration; all other data sources are not.

For the current study, this would mean that only the characteristic (keystroke dy-

namics OR �ngerprint recognition) that best represents an identity would be selected

and utilised for veri�cation. In terms of biometrics this is basically a uni-modal ap-

proach, and because of a superior accuracy rating (refer Table 2.1), �ngerprint fea-

tures would probably be selected over keystroke dynamics in most instances. Even

considering two more comparatively equivalent characteristics (such as �ngerprint

features and iriscode), still only one gets utilised (though the chosen characteristic

could vary in this case).

The purpose of this study was the feature level fusion of multiple sources of

data for improved accuracy in the veri�cation process. That is, a multi-modal

approach which should return more accurate and robust results. Therefore, as the

competitive approach did not �t the aim of the this study it was not considered

further. Consequently for this phase of the experiment, the other two paradigms

(complementary and cooperative) were applied to the processed data from the two

previous experimental phases (keystroke dynamics and �ngerprint recognition), with

the outcomes from the current phase to be compared with the results achieved during

the previous phases (refer Chapters 6 and 7).

5.6.2 Complementary Data Fusion Approach

The complementary data fusion approach consists of the combination of all available

metrics from all sources of data. That is, 100% of the data from all sources is

utilised. This is usually achieved by the concatenation of the metrics from those data

sources. There is no known advantage to any particular order for the concatenation.
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Therefore for this study, the keystroke dynamics data and �ngerprint feature data

were merged in that order, for no particular reason.

The following section describes the process for the fusion of keystroke dynamic

metrics and �ngerprint feature metrics using the complementary approach.

5.6.2.1 Complementary Fusion of Keystroke Dynamics and Fingerprint

Feature Data

For the fusion process, there were two conceivable ways to create the data �les:

1. Utilising the metrics �les that were obtained for the individual biometric char-

acteristics (from the previous two phases). The determination of the metrics

�les for all participants was described in sections 5.4.4 and 5.5.4. The fusion

process would involve the concatenation of the keystroke dynamic metrics and

the �ngerprint feature metrics for each sample for each participant. This would

be followed by the selection of samples for creating the training, testing and

validation �les by the same processes described in sections 5.4.5 and 5.5.6 for

the creation of such �les for the previous two phases of the experiment.

2. However, a simpler method was to utilise the training, testing and valida-

tion �les that had already been created for ANN analysis in the previous

two phases. These �les had already undergone the selection of samples and

metrics, and therefore fusion became merely a matter of concatenating the

keystroke dynamic metrics and the �ngerprint feature metrics for each sample

for each training group member from the appropriate training, testing and

validation �les. This method was adopted for the current experiment as it

greatly simpli�ed the fusion process.

Algorithm 5.5 demonstrates the process that was applied to all samples in the

training, testing and validation �les (from the previous two phases), for each training

group member. Note that in Algorithm 5.5, the training �les had samples = 79,

the testing �les had samples = 10, 600, and the validation �les had samples = 10.

In Algorithm 5.5, Steps 2�5 demonstrate that a row of keystroke dynamic met-

rics was copied �rst into a row of dfMatrix (the two dimensional array for storing
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the combined metrics). Then Steps 6�9 demonstrate that a row of �ngerprint

feature metrics was appended to the same row of dfMatrix.

Algorithm 5.5 Complementary Data Fusion

Let samples be the number of samples in each data �le.
Let kdMatrix be the two dimensional array containing the keystroke dynamic
metrics.
Let kdLength be the number of keystroke dynamic metrics in each sample.
Let fpMatrix be the two dimensional array containing the �ngerprint feature
metrics.
Let fpLength be the number of �ngerprint feature metrics in each sample.
Let dfMatrix be the two dimensional array for storing the combined metrics.
Let dfLength ← kdLength + fpLength, the number of combined metrics in each
sample.
Let i be the loop control variable for accessing the rows in all matrices.
Let j be the loop control variable for accessing columns in all matrices.

1: For i = 0 to samples do
2: For j = 0 to kdLength do
3: dfMatrix[i][j]← kdMatrix[i][j]
4: j ← j + 1
5: End j For
6: For j = kdLength to dfLength do
7: dfMatrix[i][j]← fpMatrix[i][j − kdLength]
8: j ← j + 1
9: End j For
10: i← i+ 1
11: End i For

In order to access the correct column numbers of dfMatrix (after the keystroke

dynamic metrics have been copied into it), Step 6 has j = kdLength, the number

of keystroke dynamic metrics. This meant that in Step 7, kdlength required sub-

traction from j in order to access the correct column of fpMatrix (the �ngerprint

feature matrix).

As a result of the fusion process, there were training, testing and validation �les

created (for the same 50 training group members determined in the previous two

phases of the experiment), with each sample in the �les consisting of 76 metrics (24

keystroke dynamic metrics and 52 �ngerprint feature metrics). The relative number

of metrics from the two sources re�ects the greater validation power of �ngerprint

recognition compared with keystroke dynamics, as discussed in Chapter 2 section

2.2.4. The experiment then proceeded with the training and testing phases.



290 CHAPTER 5. EXPERIMENTAL METHODS

5.6.2.2 Final Analysis Procedure

The training and testing phases for the �nal analysis (adopting the complementary

data fusion approach) were conducted in the same manner as the phases described in

sections 5.4.5 and 5.5.6. So for each of the 50 training group members, the following

�les were utilised:

• The training �les consisted of 79 samples (30 for the positive training case and

49 for the negative training case, with 76 metrics per sample).

• The testing �les consisted of 10,600 samples (100 for the member being tested,

plus 100 for the other 49 training group members, plus 140 for the 40 non-

training group members, with 76 metrics per sample).

• The validations �les consisted of 10 samples (with 76 metrics per sample).

When training the ANNs, the 76 metrics (per sample) from a training input �le

became the input layer nodes for the ANNs. The number of hidden layer nodes

was varied from 2 to 26 (inclusive), for each training input �le. This was done so

the most appropriate ANN con�guration for each member could be determined by

trying di�erent con�gurations and seeing which one performed best.

The reason for the upper limit of 26 hidden layer nodes was because of the

accepted knowledge that �ngerprint recognition is a more accurate biometric char-

acteristic than keystroke dynamics. It was therefore deemed appropriate to utilise

the same upper limit, as was applied to the �ngerprint recognition training, for

training the combined data.

As a result there were 1,250 individual ANNs trained (50 x 25). The ANN train-

ing phase for the complementary fused data (with the multiple con�gurations just

described) was conducted using a desktop computer with 2 Ghz AMD processor and

512 MB RAM. Training took 14 days (i.e. approximately 6.7 hours per participant).

Once training was completed, all ANN con�gurations were assessed to deter-

mine the single con�guration (for a participant) that returned the least number of

false acceptances (Type I errors) and false rejections (Type II errors). This process

was performed manually because the determination required assessing the trade-o�
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between the two error types. The con�guration that returned the least number of

Type I errors, whilst returning Type II errors at an acceptable level was selected.

The same process was applied for all training group members, and the weights of

the ANN con�gurations (thus selected) were used as registered templates from that

point onwards. These were written to �le (such that the participant number and

number of hidden layer nodes were indicated in the �le name, and given a `.w'

extension) and subsequently used during the testing phase.

When testing the ANNs, the 76 metrics (per sample) from a testing input �les

became the input layer nodes for the ANNs. Each training group member had a

testing input �le consisting of 10,600 input patterns (i.e. 100 for the member being

tested, plus 100 for each of the other 49 training group members, plus 140 for each

of the 40 non-training group members), with 76 metrics per sample. There were 50

such testing input �les (one for each training group member). The stored weights

(from the training phase) were applied to the ANNs, thus resulting in the correct

con�guration21.

Positive case testing examines whether the ANN has correctly recognised samples

belonging to the member that it has been trained to recognise (samples it has not

seen during training). Non-recognition of any of these 100 positive case samples are

instances of Type II errors (false negatives) (refer Chapter 6 section 6.2).

Negative case testing examines whether the ANN has correctly rejected sam-

ples belonging to someone other than the member it has been trained to recognise.

Recognition of any of these negative case samples are instances of Type I errors

(false positives) (refer Chapter 6 section 6.2).

The results of the testing phase are provided in Chapter 6, and a discussion of

these results is presented in Chapter 7.

5.6.3 Cooperative Data Fusion Approach

Unlike the complementary data fusion approach, where 100% of available metrics

from all data sources are included in the fusion process, the cooperative data fusion

21Note that the stored weights from this phase of the experiment were also utilised in the
cooperative data fusion metrics selection process (refer section 5.6.3.1).
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approach utilises the `best' features from each data source. That is, cooperative

data fusion is based on the assumption that only features (from each source) that

best characterise an object/entity/identity are combined to enhance recognition.

This has the advantage of reducing the size of data sets (by discarding unnecessary

features), which decreases the amount of processing (and time) required to perform

the recognition task (Dash and Liu, 1997).

Cooperative data fusion then, necessarily involves a process of feature selection.

The aim of feature selection is to determine those features (from all sources) that

allow for the deduction of structures or patterns within the data, which are most

likely to achieve the intended goal (John et al., 1994).

Like most real-world classi�cation tasks, recognition requires the use of super-

vised learning (Dash and Liu, 1997). As described in Chapter 2 section 2.4.2, su-

pervised learning involves providing a training set of data (representing instances of

the class to be learned) to a learning algorithm. It also requires providing `target'

outputs for each sample in the training set. Thus targets provide a goal for the

learning process, by providing positive reinforcement for the training set samples.

In order to e�ectively learn from the training set the algorithm attempts to

deduce structures that correctly classify a large enough subset of the entire training

set, yet not so large as to over�t the data and thus become too speci�c (or less

generalisable) (John et al., 1994). That is, the algorithm should use only the subset

of features that leads to the best performance.

This task involves determining the speci�c features (within the training set) that

result in optimum prediction accuracy, and is known as the feature subset selection

problem. Typically, selection is based on the relevance of features to the accuracy

of prediction. That is, if certain features are more relevant than others, they are

considered the `most representative' features for accurate prediction. So the question

is, what constitutes relevance?

John et al. (1994) conclude that though relevance (in terms of feature subset

selection) may seem a trivial matter, there are varying degrees of relevance. They

de�ne relevance and irrelevance as follows (John et al., 1994):
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• Relevance refers to a feature's contribution to prediction accuracy. To quantify

relevance, two levels of contribution can be considered:

1. strongly relevant - the feature is essential to prediction accuracy. If it is

removed from the training set, loss of prediction accuracy will de�nitely

occur.

2. weakly relevant - the feature sometimes contributes to prediction accuracy

or contributes to varying degrees. If it is removed from the training set,

loss of prediction accuracy may or may not occur; the impact on accuracy

will depend upon the degree to which the feature is relevant.

• Irrelevance indicates that the feature does not contribute to prediction accu-

racy at all. If it is removed from the training set, no loss of prediction accuracy

will occur as the feature is super�uous.

Obviously, any feature subset selection process would attempt to determine rel-

evant features and discard irrelevant features. The application to which cooperative

data fusion is to be applied will determine the accepted degree of relevance. For

example, mission critical applications would insist on the inclusion of only strongly

relevant features (i.e. excluding irrelevant and weakly relevant features), thus im-

posing very stringent restrictions to minimise false classi�cation. Less critical appli-

cations may accept weakly relevant features (as well as strongly relevant features),

at the possible expense of an increase in false classi�cation.

Based on this understanding of relevance, there are of a number of issues to be

resolved when deciding upon the feature subset selection criteria for any application:

1. What percentage of the available data (from all sources) should be utilised in

the selection process? For example, if features are selected from the combined

data used in a complementary data fusion approach (remembering that this

constitutes 100% of the available data), what percentage of that data would

best serve for cooperative data fusion? For example, 50% of the combined

data? OR 75%? OR 90%?
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2. What proportion of the chosen percentage should each of the individual data

sources contribute to the newly created fused data set, and how should these

proportions be determined? For example, given two data sources, if the fea-

tures from one data source are more accurate for veri�cation purposes than

the features of the other data source, should the more accurate data source

constitute a larger proportion (of features) in the fused data set? If so, what

proportion (of the nominate percentage) should it contribute?

3. What method or criteria should be used to determine the relevance of features

(and consequently their selection)? Will a di�erent feature selection method

be required for each data source? Note that the selection method may need to

be decided upon before the percentages and proportions can be determined.

Conversely, the required percentages and proportions may impact on the choice

of the selection method.

In relation to question 1, depending on the determined proportions of features

from each data source and the selection method, it is entirely possible that certain

percentages will not be practicable. The percentages chosen for this phase of the

current experiment, and the reasons why some percentages were not practicable, are

discussed in the next section 5.6.3.1.

In relation to question 2, depending on the accuracy (for veri�cation purposes)

of the data sources and the selection method, an uneven proportion of metrics from

the di�erent data sources may be required.

For example in the current study, the keystroke dynamics data consisted of 24

metrics and the �ngerprint feature data consisted of 52 metrics. The �rst two phases

of the study returned much more accurate results for the �ngerprint feature data

than for the keystroke dynamics data (refer to Chapters 6 and 7). Given that

�ngerprint features were more accurate than keystroke dynamics, it was inevitable

that �ngerprint feature data would constitute a much larger proportion of each

sample in the combined data sets. Again, the calculation of the proportions used in

this phase of the experiment is discussed in the next section 5.6.3.1.
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The following section describes the method upon which feature selection was

based for the current study (in answer to question 3) for the cooperative data fusion

of keystroke dynamics data and �ngerprint feature data at the feature level22.

5.6.3.1 Selection of Keystroke Dynamics and Fingerprint Feature

Metrics

Firstly, because percentages and proportions may be a�ected by the selection crite-

ria, the determination of a selection method was required before the percentages and

proportions could be quanti�ed. That is, the answer to question 3 (above) required

answering before the answers to questions 1 and 2 could be determined.

Consequently, the following discussion describes the method of feature selection

and then the determination of the respective percentages and proportions. It then

goes on to explain the processes developed to achieve the cooperative data fusion.

The data �les from which features (from both sources) were extracted were copies

of those created for the complementary data fusion experiment. That is, the �les

obtained as described in section 5.6.2.1. As explained in that section, the comple-

mentary data fusion process resulted in training, testing and validation �les created

for the 50 training group members with the training �les containing 79 samples,

the testing �les containing 10,600 samples, and the validation �les containing 10

samples; each sample in the �les consisted of 76 metrics.

Also used from the complementary data fusion experiment were the weight �les,

that were recorded at the completion of ANN training, for that phase of the exper-

iment; these �les were used for feature selection in this phase of the experiment.

An ANN can be trained (via an iterative supervised learning algorithm) to recog-

nise patterns within training data sets. During the iterative processing, the impor-

tance or relevance of each input node (or feature) is gradually learned by the ANN23.

22As noted in Chapter 8 section 8.4, other feature selection methods (than those used in the
current experiment) may be equally applicable to the task of feature selection, and may perform
as well or better. However, the method chosen was for convenience because trained ANN weights
were readily available as a result of phases 1 and 2 of the experiment. Also, evaluating other feature
selection methods was beyond the scope of this study.

23In certain ANNs, this is facilitated by back propagating error values (calculated at the hidden
and output layer nodes) through the network and subsequently updating the connecting weight
values between input, hidden and output layer nodes.
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The relevance of an input node (or feature) becomes apparent by observing and

assessing the weight values between it and the hidden layer nodes that it is connected

to (Schuschel and Hsu, 1998). Typically, input nodes that become more important

(or relevant) result in an increase to the associated weight values. The value of

the associated weights corresponding to irrelevant input nodes tend to diminish or

decrease. So by determining the most relevant nodes during the training process,

ANNs actually perform feature subset selection because they start by processing all

features and gradually determine the most relevant.

However, an ANN learning algorithm could be considered an ine�cient method

for feature subset selection, because initially the training process requires processing

the entire feature space24. Despite the ANNs ine�ciency as a complete feature subset

selection solution, the weight values from previously trained ANNs (if available) can

be an e�ective method of determining the most relevant nodes (or features) and

thus be utilised for feature subset selection (Schuschel and Hsu, 1998).

According to John, et al., (1994), there are two primary approaches to feature

subset selection:

1. The �lter model: where features are selected independently from the learn-

ing/induction algorithm. As demonstrated in Figure 5.6, features are �ltered

as part of a pre-processing step, prior to them being supplied to the learn-

ing/induction algorithm.

Figure 5.6: Filter Model

2. The wrapper model: where the learning/induction algorithm becomes a part

of the selection process. As demonstrated in Figure 5.7, this model involves

searching the feature space, evaluating feature subsets, and applying the sub-

sets to the learning/induction algorithm. By iteratively processing these steps,

the `best' subset is found. Note that the learning/induction algorithm directly

guides the selection process.

24Other intelligent methods of feature subset selection have been well reviewed by Dash and Liu
(1997).
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Figure 5.7: Wrapper Model

Given that previously trained ANN weight values were available for this phase

of the experiment (from the complementary data fusion phase of the experiment),

it was considered inappropriate to utilise the wrapper model for this study as that

would require further unnecessary iterative processing. That is, as the previously

trained ANNs had already determined the most relevant features, there was no

need to further process these features using the wrapper methodology. Therefore,

the selection of features for the cooperative phase of the experiment, was achieved

utilising the �lter model. That is, by selecting a subset of features based on the

weight values from the already trained ANNs.

Schuschel and Hsu (1998) suggested the use of a subset selection method that

accumulates the weights (connected to an input layer node) from a trained ANN.

This accumulated value was termed the Approximate Relative Local Gain (ARLG).

An ARLG is calculated for each input layer node, by accumulating all the weights

connected to it. Once calculated, the ARLGs can be ordered by magnitude, and

the nodes associated with the largest magnitude should relate to the most relevant

features. The nodes associated with the smallest magnitude should relate to the

least relevant features. This information can then be utilised to determine the most

appropriate proportion of features from each biometric characteristic, and to select

the most relevant feature subsets.

Schuschel and Hsu (1998), described the derivation of the ARLG, and provided

Equation 5.11 for its calculation.
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LGik =
∑
j

|Wij ×Wjk| (5.11)

where LGik represents the ARLG for each input layer node, Wij are the weight

values connecting the current ith input layer node and its associated hidden layer

nodes, and Wjk are the weight values connecting the current jth hidden layer node

and its associated output layer nodes.

Algorithm 5.6 shows the implementation of Equation 5.11 for the calculation

of the ARLGs, utilising the ANN weight value �les from the training phase of the

complementary data fusion experiment. Note that when implemented, the value of

k from Equation 5.11 was set to 1. This was because all ANNs in the current study

had only 1 output layer node.

The result of the calculations described in Algorithm 5.6 was a matrix where

each row contained all ARLG values for a sample, with each column containing the

individual ARLG values (corresponding to each input node) in that sample. Note

that the column index number corresponding to each input layer node was also

stored in a separate matrix (Indices) for the subsequent selection process.

Each sample's ARLGs (i.e. column values) were then sorted into descending

order, whilst maintaining the correspondence between the ARLGs and the original

indices (feature positions). This was important for the selection process. Once the

ARLGs were ordered, the association between the highest values and their corre-

sponding indices/positions meant that the correct metrics could be accessed when

and if selected.

As an example, Table 5.11 shows the 24 keystroke dynamics ARLGs for 3 samples

for participant 1. In Table 5.11, the ordered local gains (to 2 decimal places) and

their corresponding index positions are shown next to each other for the 3 samples.

It can be seen that each sample's ARLGs decrease in magnitude as row numbers

increase, and that no index number is repeated in any of the associated columns.
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Algorithm 5.6 Approximate Relative Local Gain

Let samples be the number of samples in the training �les corresponding to each
weight �le.
Let inputToMiddle be a matrix containing the weights between each of the input
layer nodes (rows) and all hidden layer nodes (columns).
Let ilneurons be the number of rows (i.e. the number of input layer nodes) in
inputToMiddle.
Let mlneurons be the number of columns (i.e. the number of hidden layer nodes)
in inputToMiddle.
Let middleToOutput be an array containing the weights between each of the hidden
layer nodes and the single output layer node.
Let ARLG be a matrix with samples number of rows and ilneurons number of
columns, for storing the accumulated relative local gains.
Let Indices be a matrix with samples number of rows and ilneurons number of
columns, for storing the indices corresponding to the ARLGs.
Let s be the loop control variable for accessing each sample.
Let i be the loop control variable for accessing the rows in inputToMiddle.
Let j be the loop control variable for accessing the columns in inputToMiddle and
the elements in middleToOutput.

1: For s← 0 to samples do
2: For i← 0 to ilneurons do
3: For j ← 0 to mlneurons do
4: ARLG[s][i]← ARLG[s][i] + |inputToMiddle[i][j] ∗middleToOutput[j]|
5: j ← j + 1
6: End j For
7: Indices[s][i]← i
8: i← i+ 1
9: End i For
10: s← s+ 1
11: End s For
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Sample 1

Local Gain

Sample 1

Indices

Sample 2

Local Gain

Sample 2

Indices

Sample 3

Local Gain

Sample 3

Indices

41.25 2 54.38 18 10.94 9

35.35 4 49.63 15 9.93 7

23.32 3 42.95 3 8.46 12

20.47 7 41.39 0 8.39 15

18.38 17 38.79 23 6.52 19

17.52 23 35.21 21 5.93 0

17.16 20 34.43 14 4.61 23

16.27 18 30.49 17 4.24 17

15.89 19 30.14 16 3.95 6

15.89 5 29.76 4 3.86 14

15.58 11 29.27 20 3.85 3

15.32 8 26.16 2 3.72 18

14.31 14 23.91 5 3.58 16

13.99 12 21.69 22 3.54 21

10.93 13 20.85 11 3.11 8

10.82 16 19.87 6 2.34 2

10.25 10 19.62 10 2.27 11

10.05 6 18.01 7 2.07 4

10.01 15 16.54 8 1.95 1

9.28 21 11.92 1 1.80 13

8.49 0 11.90 19 1.69 5

7.96 1 11.81 13 1.63 10

5.93 9 6.95 9 1.32 22

4.89 22 5.57 12 0.93 20

Table 5.11: Approximate Relative Local Gain for Keystroke Dynamics
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Participant Keystroke Dynamic

Average ARLG

Fingerprint Feature

Average ARLG

Proportionate

Ratio

1 15.3879 0.9592 16.0425

2 13.8977 1.2843 10.8215

3 26.3020 0.8618 30.5204

5 18.4693 0.6466 28.5647

7 4.1945 1.0317 4.06573

9 13.0952 0.7669 17.0733

12 23.9413 0.8560 27.9685

14 7.0749 0.8416 8.4066

16 5.5218 0.9826 5.6195

18 4.9053 0.9359 5.2411

20 8.2078 0.7025 11.6832

21 7.3238 0.7847 9.3332

23 10.5154 1.4024 7.4982

24 10.5546 0.9010 11.7137

25 9.9607 0.6893 14.4502

27 9.4348 0.8471 11.1373

29 20.0864 0.8971 22.3898

32 4.9117 0.8783 5.5919

34 9.7762 0.7272 13.4433

36 10.1369 0.8042 12.6048

38 5.4568 0.5514 9.8959

40 4.1378 0.7905 5.2347

41 11.4390 0.9329 12.2614

43 14.7119 0.6953 21.1603

45 6.5489 0.8869 7.3842

46 8.1231 0.8104 10.0235

47 17.4786 0.8763 19.9458

49 17.6859 0.6785 26.0673

52 3.5083 0.5685 6.1709

54 10.5214 0.8015 13.1274

56 4.9203 0.9306 5.2870

58 26.5361 1.2193 21.7634

60 8.7201 0.7571 11.5184

61 15.7636 0.7455 21.1447

63 15.9693 0.8857 18.0309

65 12.0272 1.0177 11.8185

67 16.1491 0.9436 17.1136

68 8.5989 0.8016 10.7275

69 11.6031 0.7239 16.0278

72 10.0226 0.9169 10.9309

74 17.3575 0.9463 18.3430

76 8.6560 1.4955 5.7880

78 9.7989 1.1174 8.7695

80 14.6645 0.8547 17.1575

81 21.6240 0.5763 37.5204

83 11.4662 0.7021 16.3304

85 3.7297 0.7141 5.2227

87 17.98439 0.9687 18.5651

89 14.2733 0.8463 16.8659

90 11.9442 0.8029 14.8763

Average 14.1848

Table 5.12: Average Local Gain Proportions
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After the calculation and sorting of the ARLGs, a method was required to de-

termine how many samples from each characteristic to utilise. It was decided to

determine an average ARLG for each of the two biometric characteristics for each

participant (over all of their samples). From the two averages, a proportionate ratio

was established for each participant, by dividing the average ARLG for �ngerprint

features into the average ARLG for keystroke dynamics. Table 5.12 shows the aver-

age ARLGs for keystroke dynamics (column 2) and �ngerprint features (column 3)

and the resultant proportionate ratios (column 4).

The proportionate ratio for each participant was then used to determine the

number of keystroke dynamic metrics to select (from the available metrics), across

all samples for a given percentage. The remainder of the required number of metrics

(to make up the given percentage) were selected from the �ngerprint feature metrics.

It was discovered at this point that the calculated proportionate ratios a�ected

the range of percentages that could be tested during the experiment (refer question

1 in section 5.6.3). As an example, 80% of the 76 metrics (from the complementary

data fusion experiment) is 61 metrics (rounded to the nearest whole number). If

the selection process indicated that 7 keystroke dynamic metrics were considered

relevant, this means that 54 �ngerprint feature metrics would be required to make

up the remaining metrics to give the total of 61. As there were only 52 �ngerprint

metrics available, this would not be possible.

In fact, percentages above 70% and below 40% were not practicable because

once the proportion levels were determined for most participants, there were either

not enough �ngerprint feature metrics available to make their quota or the keystroke

dynamic metrics were not represented at all. It was therefore decided to conduct the

cooperative data fusion experiment for 4 di�erent percentages�40%, 50%, 60%, and

70%�of the 100% available. Only four percentages were used because this phase of

the experiment was primarily to demonstrate some preliminary results that may be

achieved using cooperative data fusion. Percentages rounded to 10 were utilised for

ease of calculation. The required number of metrics (rounded to the nearest whole

number) for these percentages (of the 76 available metrics) are shown in Table 5.13.
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Percentage of
Available
Metrics

Required
Number of
Metrics

40% 30
50% 38
60% 46
70% 53

Table 5.13: Number of Metrics Per Percentage

The following worked example demonstrates the determination of the number

of metrics that were selected from both data sources for participant 1. Firstly, Ta-

ble 5.13 indicates that the required number of metrics for 50% (of the 76 available

metrics) is 38 metrics. Secondly from Table 5.12, the proportionate ratio for partic-

ipant 1 is 16.0425. Dividing 16.0425 into 38, returns a result of 2.3687. Rounding

this value to the nearest whole number, indicates that 2 keystroke dynamic metrics

should be used; thus 36 �ngerprint feature metrics would be needed to make up the

required number of metrics.

Algorithm 5.7 shows the implementation used to determine the number of metrics

to utilise from both data sources. The quantities were used across all samples for

each participant, for a given percentage. The same process was applied to all the

percentages used in the experiment (refer next section 5.6.3.2).

Algorithm 5.7 Proportion Calculation For Cooperative Data Fusion
Let participants be the number of training group members.
Let metrics be the required number of metrics for the particular percentage of
available metrics (refer Table 5.13).
Let proportions be an array containing the proportions for each participant (from
the last column of Table 5.12).
Let kdRatios be an array for storing the number of keystroke dynamic metrics to
use (calculated for each participant).
Let fpRatios be an array for storing the number of �ngerprint feature metrics to
use (calculated for each participant).

1: For i← 0 to participants do
2: kdRatios[i]← metrics/proportions[i] (rounded to the nearest whole number)
3: fpRatios[i]← metrics− kdRatios[i]
4: i← i+ 1
5: End i For
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Once the number of metrics per characteristic were determined (according to

Algorithm 5.7), the selection process required the storage of the index numbers

corresponding to the required number of ordered keystroke dynamic ARLGs and

�ngerprint feature ARLGs.

So, if 2 keystroke dynamic metrics and 36 �ngerprint feature metrics were re-

quired, the index numbers�corresponding to the 2 largest keystroke dynamic ARLGs

and the 36 largest �ngerprint feature ARLGs�were stored so that the appropriate

metrics could be extracted and fused (refer next section 5.6.3.2).

Algorithm 5.8 shows the method for accessing and storing the appropriate index

numbers corresponding to the ARLGs chosen by magnitude.

Algorithm 5.8 Index Determination For Cooperative Data Fusion
Let participants be the number of training group members.
Let samples the number of samples in the training �les.
Let kdRatios be an array containing the number of keystroke dynamic metrics to
use, calculated for each participant according to Algorithm 5.7.
Let fpRatios be an array containing the number of �ngerprint feature metrics to
use, calculated for each participant according to Algorithm 5.7.
Let kdIndices be a matrix containing the index numbers (corresponding to the
ordered keystroke dynamics ARLGs calculated according to Algorithm 5.6).
Let fpIndices be a matrix containing the index numbers (corresponding to the
ordered �ngerprint feature ARLGs calculated according to Algorithm 5.6).
Let kdNeurons be a matrix for storing the indices (of the selected ARLGs) used to
access the corresponding keystroke dynamics metrics.
Let fpNeurons be a matrix for storing the indices (of the selected ARLGs) used
to access the corresponding �ngerprint feature metrics.
Let i, j, k be the loop control variables for accessing arrays and matrices.

1: For i← 0 to participants do
2: For j ← 0 to samples do
3: For k ← 0 to kdRatios[i] do
4: kdNeurons[j][k]← kdIndices[j][k]
5: k ← k + 1
6: End k For
7: For k = 0 to fpRatios[i] do
8: fpNeurons[j][k]← fpIndices[j][k]
9: k ← k + 1
10: End k For
11: j ← j + 1
12: End j For
13: i← i+ 1
14: End i For
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As an example, using the just mentioned proportions and the data from Table

5.11, the two selected keystroke dynamic metrics for Sample 1 would be those at

index 2 and index 4 of the array storing the metrics; for Sample 2 the selected

keystroke dynamic metrics would be those at index 18 and index 15; for Sample 3

the selected keystroke dynamic metrics would be those at index 9 and index 7. In

each case, the remaining 36 metrics would be selected from the �ngerprint feature

metrics in the same manner.

The next section 5.6.3.2 describes the extraction of actual metrics and the fusion

of those metrics.

5.6.3.2 Cooperative Fusion of Keystroke Dynamics and Fingerprint Fea-

ture Data

Once the proportions of each data set and the particular indices of the selected

features (from both data sources) had been determined, extraction of the appropriate

metrics from the combined metrics �les proceeded, utilising the training, testing and

validation data �les from the complementary phase of the experiment.

The fusion process was achieved in the same manner as that used for the com-

plementary data fusion phase. That is, simple concatenation. However, unlike the

complementary data fusion process (where 100% of all available metrics were com-

bined), the cooperative data fusion process combined the appropriate proportion of

metrics (and speci�cally the selected metrics) according to the 4 di�erent percent-

ages previously mentioned (i.e. 40%, 50%, 60%, and 70%).

Algorithm 5.9 shows the extraction and fusion method implemented for this

phase of the experiment. Note that Steps 3 to 7 in Algorithm 5.9, copy the keystroke

dynamic metrics into each row of dfMatrix (the two dimensional array for the fused

data). Step 4 (kdIndex← kdNeurons[i][j]) accesses the correct column number to

copy and assigns it to kdIndex (which was then used to access the actual metric in

Step 5). Steps 10 to 15 copy the �ngerprint feature metrics into the same row of

dfMatrix. Again, Step 11 (fpIndex ← fpNeurons[i][counter] + 24) accesses the

correct column number to copy and assigns it to fpIndex (which was then used to

access the actual metric in Step 12).
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Algorithm 5.9 Feature Extraction and Cooperative Data Fusion Method
Let participants be the number of training group members.
Let samples be the number of samples in each data �le (79 for training �les, 10600
for testing �les, and 10 for validation �les).
Let Metrics be the matrix for storing the training, testing, or validation metrics
read from the appropriate data �les (containing 76 metrics per sample).
Let kdRatios be an array containing the number of keystroke dynamic metrics to
use, calculated for each participant according to Algorithm 5.7.
Let fpRatios be an array containing the number of �ngerprint feature metrics to
use, calculated for each participant according to Algorithm 5.7.
Let kdNeurons be the matrix containing the indices corresponding to the selected
keystroke dynamic metrics (as determined by Algorithm 5.8).
Let fpNeurons be the matrix containing the indices corresponding to the selected
�ngerprint feature metrics (as determined by Algorithm 5.8).
Let dfMatrix be the matrix for storing the combined metrics.
Let dfLength the number of combined metrics for each sample.
Let i, j, p be the loop control variables for accessing the rows and columns in all
matrices.
Let kdIndex, fpIndex, counter be variable for accessing speci�c column indices.

1: For p← 0 to participants do
2: For i← 0 to samples do
3: For j ← 0 to kdRatios[p] do
4: kdIndex← kdNeurons[i][j]
5: dfMatrix[i][j]←Metrics[i][kdIndex]
6: j ← j + 1
7: End j For
8: counter ← 0
9: dfLength← kdRatios[p] + fpRatios[p]
10: For j ← kdRatios[p] to dfLength do
11: fpIndex← fpNeurons[i][counter] + 24
12: dfMatrix[i][j]←Metrics[i][fpIndex]
13: counter ← counter + 1
14: j ← j + 1
15: End j For
16: i← i+ 1
17: End i For
18: p← p+ 1
19: End p For

Note that in Step 11, counter was used to access the correct column number

of fpNeurons because j must keep incrementing to access the correct column of

dfMatrix. Also note that 24 was added to fpNeurons[i][counter] so that the correct

column in the Metrics matrix was accessed (remembering that the data �les from

the complementary phase have 24 keystroke dynamic metrics �rst, followed by the

52 �ngerprint feature metrics per sample).
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5.6.3.3 Final Analysis Procedure

The training and testing phases for the �nal analysis (adopting the cooperative data

fusion approach) were conducted in the same manner as the complementary data

fusion approach, described in section 5.6.2.2.

However unlike the procedure used for the complementary approach, the proce-

dure for the cooperative approach required 4 stages; one stage for each of the four

percentages (40%, 50%, 60%, 70%) of the complementary data. This meant creat-

ing training, testing, and validation �les (with the correct proportion of metrics) for

each of those four stages.

Using the number of metrics designated in Table 5.13, the following process was

applied for the creation of the relevant �les for each stage:

• 40% � for each of the 50 training group members, the training �les consisted

of 79 samples (30 for the positive training case and 49 for the negative training

case), with 30 metrics per sample. The testing �les consisted of 10,600 samples

(100 for the member being tested, plus 100 for the other 49 training group

members, plus 140 for the 40 non-training group members), with 30 metrics

per sample, and the validation �les consisted of 10 samples (with 30 metrics

per sample).

• 50% � for each of the 50 training group members, the training �les consisted of

79 samples (with 38 metrics per sample). The testing �les consisted of 10,600

samples (with 38 metrics per sample), and the validation �les consisted of 10

samples (with 38 metrics per sample).

• 60% � for each of the 50 training group members, the training �les consisted of

79 samples (with 46 metrics per sample). The testing �les consisted of 10,600

samples (with 46 metrics per sample), and the validation �les consisted of 10

samples (with 46 metrics per sample).

• 70% � for each of the 50 training group members, the training �les consisted of

79 samples (with 53 metrics per sample). The testing �les consisted of 10,600
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samples (with 53 metrics per sample), and the validation �les consisted of 10

samples (with 53 metrics per sample).

When training the ANNs for each of the four stages, the designated number

of metrics (per sample), as stated above, for each participant's training input �le

became the input layer nodes for their ANN.

Regardless of the number of input layer nodes, the number of hidden layer nodes

was varied from 2 to 26 (inclusive), for each training input �le. This was done so

the most appropriate ANN con�guration for each member could be determined by

trying di�erent con�gurations and seeing which one performed best. The reason for

the upper limit of 26 hidden layer nodes was because that was the number used for

training the �ngerprint data and the fused data (in the complementary phase), and

there seemed to be no reason to change adopting the same rationale.

As a result there were 1,250 individual ANNs trained (50 x 25) for each of the

four stages, giving a total of 5,000 individual ANNs for the entire cooperative fusion

training phase. The ANN training phase for cooperatively fused data (with the

multiple con�gurations just described) was conducted using a desktop computer

with 2 Ghz AMD processor and 512 MB RAM. As there were four stages, the

following outlines the time taken for each stage:

• 40% � Training took 9 days (i.e. approximately 4.3 hours per participant).

• 50% � Training took 9 days (i.e. approximately 4.3 hours per participant).

• 60% � Training took 10 days (i.e. approximately 4.8 hours per participant).

• 70% � Training took 11 days (i.e. approximately 5.3 hours per participant).

Once training was completed, all ANN con�gurations were assessed to determine

the single con�guration (for a participant for each stage) that returned the least

number of false acceptances (Type I errors) and false rejections (Type II errors).

This process was performed manually because the determination required assessing

the trade-o� between the two error types. The con�guration that returned the least

number of Type I errors, whilst returning Type II errors at an acceptable level was
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selected. The same process was applied for all training group members, and the

weights of the ANN con�gurations (thus selected) were used as registered templates

from that point onwards. These were written to a �le (such that the participant

number and number of hidden layer nodes were indicated in the �le name, and given

a `.w' extension) and subsequently used during the testing phase.

When testing the ANNs for each of the four stages, the designated number of

metrics (per sample), as previously stated, for each participant's testing input �le

became the input layer nodes for their ANN. The stored weights (from the training

phase) were applied to the ANNs, thus resulting in the correct con�guration.

Positive case testing examines whether the ANN has correctly recognised samples

belonging to the member that it has been trained to recognise (samples it has not

seen during training). Non-recognition of any of these 100 positive case samples are

instances of Type II errors (false negatives) (refer Chapter 6 section 6.2).

Negative case testing examines whether the ANN has correctly rejected sam-

ples belonging to someone other than the member it has been trained to recognise.

Recognition of any of these negative case samples are instances of Type I errors

(false positives) (refer Chapter 6 section 6.2).

The results of the testing phase are provided in Chapter 6, and a discussion of

these results is presented in Chapter 7.

5.7 Experimental Validity

Experimental validity refers to the manner in which variables in�uence the results

of the research, and whether these results can be generalised to the population at

large (He�ner, 2004). In the design of an experiment, there is a desire to establish

a causal relationship, where it can be established beyond doubt, that the observed

e�ects (on the dependent variable) were caused only by the manipulation of the

independent variable under consideration, and not by some other in�uence (Emory

and Cooper, 1991; Albright and Malloy, 2000). That is, do the observed results

truly represent the causality of manipulating the independent variable, or has some

extraneous in�uence impacted?
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In designing and conducting the current experiment�making decisions related

to the choices described in this chapter�the methodological issues relating to exper-

imental validity were given careful consideration. In particular, the relevant internal

and external factors were deliberated.

5.7.1 Internal Validity

Whether an experiment employs accepted or recommended research design practices

or not, there are factors which may bring into question the truth of observations

and subsequent conclusions (Emory and Cooper, 1991). Internal validity deals with

factors that could interfere with the ability to infer a truly causal relationship. The

question to pose is, did the manipulation of the independent variable lead to the

observed results (i.e. the a�ect on the dependent variable) or was some extraneous

factor responsible?

Controlled treatment of experimental conditions and random assignment of par-

ticipants data greatly enhances the ability to overcome threats to internal validity

(Albright and Malloy, 2000). By adopting such measures, the legitimacy of conclu-

sions drawn from observations gains credibility.

Of the major threats to internal validity (Emory and Cooper, 1991; He�ner,

2004), the following three were considered to have had minimal or no in�uence on

the current study:

• History refers to capability of an event, outside of the research study (eg: envi-

ronmental conditions), to alter or e�ect participants' performance. As the only

involvement by participants in this study was to provide samples during the

data collection phase, the only outside events that could have threatened the

experiment were physiological changes. For example, if a participant injured

their hand or �ngers (during the data collection period), which could have

a�ected their ability to type normally or to provide �ngerprint scans of the

right index �nger. Such events did not occur to the participants who provided

samples for this study.
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• Maturation refers to the natural physiological or psychological changes that

may take place in participants over a period of time (during participation in

a study). For example, tiredness, boredom, hunger, aging. During keystroke

dynamics data collection, participants were required to supply 160 correctly

typed samples of the given phrase (as discussed in section 5.4.2). If participants

had been asked to provide the entire 160 in one collection session, they may

have grown tired or bored (which may have a�ected their performance).

In an attempt to alleviate this possible concern, the decision was taken to col-

lect only 20 samples in one collection session, and hold such collection sessions

once per week for eight weeks (for each participant). This also facilitated the

goal of keystroke dynamics, which is to di�erentiate typing patterns of di�er-

ent individuals based on their habitual typing style. So to allow participants

to develop a habitual typing style for the given text, the experiment actually

required the above decision to be made. It is doubtful that this collection

process resulted in an inappropriate maturation e�ect.

• Selection refers to the manner in which participants are selected to participate

in a study, and the manner in which they are assigned to groups. In the

current study, participants were recruited on a volunteer bases, and so no

selection by the researcher was involved other than the choice of populations

from which the participants were drawn, which is discussed below. The random

assignment of participants data to the training and non-training groups should

have accounted for any validity threats. Also, during the creation of training,

testing, and validation �les for the training group members, samples were

randomly selected.

The remaining possible threats to internal validity (Emory and Cooper, 1991;

He�ner, 2004) were considered to have had no in�uence on the current study:

• Testing refers to the chance that participants will perform better in post-tests

than they did in pre-tests (that is, when given the same test or a test of similar

di�culty). This is a result of familiarity with the test. There were no tests



312 CHAPTER 5. EXPERIMENTAL METHODS

applied to participants in this study, and so no e�ects from this threat are

anticipated.

• Instrumentation refers to changes in the measurement criteria or instruments

during the course of the study. Such changes did not occur in this study.

• Statistical regression refers to the tendency for participants who score very

high or very low in initial testing to score more toward the mean on subsequent

testing. There were no tests applied to participants in this study, and so no

e�ects from this threat are anticipated.

• Experimenter Bias refers to the possible bias a researcher may exhibit toward

anticipated results. This could a�ect observations, and possibly even result in

research methodological errors, that could skew conclusions drawn from the

study. The only possibilities for bias in this study were associated with the data

treatment after data collection. The processes discussed in this chapter were

well considered and conform to accepted research practices. It was therefore

considered that experimenter bias did not threaten validity.

• Mortality (or participant drop out) refers to changes in the composition of

study groups over the duration of an experiment. Any drop out of participants

in this study occurred during the data collection phase. Assignment to the

training and non-training groups was not performed until after data collection

was completed. It was therefore considered that mortality did not threaten

validity.

In relation to the �rst three threats to internal validity discussed above, the

processes described in this chapter were implemented to reduce any in�uence on the

experiment. In relation to the latter �ve threats to internal validity, it is believed

they had no in�uence on the experiment. Because of the nature of the current

experiment, participants were not subjected to any testing or selection criteria.

Collected data only were subjected to random assignment or selection as described

in this chapter. Also, all data were subject to the same processes; there was no

deviation in treatment25.
25Copies of the data sets collected for, and used in, the current experiment are available upon

request from the author or the author's supervisors.
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5.7.2 External Validity

External validity is concerned with the interaction of the independent variable with

factors other than those that may threaten internal validity (Emory and Cooper,

1991). It deals with the correctness of generalising inferences across time, settings

and persons. Unlike threats to internal validity, threats to external validity cannot

be controlled by random assignment (Albright and Malloy, 2000). The question to

pose is, are the results of a study (with data collected from a sample population)

truly representative of the entire population?

The following possible threats to external vadility (Emory and Cooper, 1991;

He�ner, 2004) were considered to have had minimal or no in�uence on the current

study:

1. Reactivity of Testing refers to the sensitising of participants by a pre-test

so they respond di�erently in subsequent testing. There were no pre-tests

conducted in this study, and so no sensitising of participants was possible.

2. Interaction of Selection refers to threats posed by the process of selecting par-

ticipants (i.e. participants may not be truly representative of the wider popu-

lation). In the current study participants were volunteers and were recruited

by the processes described in section 5.3. Because of the nature of the groups

from which the participants were drawn and the range of demographics, and

the particular nature of this experiment, the results are not considered to be

signi�cantly a�ected by this threat to validity.

3. Other reactive factors - interaction between participants because of arti�cial

settings (could encourage role playing). Data collection was supervised by

the author and participants did not interact with one another during data

collection, so it is believed that no role playing was possible.

4. Demand Characteristics refers to the ability of participants to pick up on

cues about the anticipated results. Data collection was the only participation

by participants. As the data collection involved repeatedly typing the same
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phrase or repeatedly having the index �nger scanned, there was no way for

participants to in�uence results by any perceptions they may have formed.

5. Hawthorne E�ects - if participants are aware of being observed, it may cause

them to modify their performance. As the only other person present during

all data collection sessions was the author, there was no reason or incentive

for participants to modify their normal typing style. Monitoring by the au-

thor was done from a distance of approximately 3 metres; this to ensure that

participants actually typed all samples (i.e. did not attempt to `trick' the

data capture program). For the �ngerprint scanning, the author sat next the

participants to ensure that scans were correctly captured.

6. Order E�ects refer to the order in which treatments are performed (if multiple

treatments are used). Whilst there was no treatment in terms of participants,

there was treatment of their data as described in this chapter. The order of

data treatment was conducted by necessity. That is, metrics extraction was

required before the selection process, and selection process was necessary prior

to �nal analysis.

As there were only 90 participants recruited for this study, the question of any

results being generalisable needs consideration. Data belonging to the non-training

group members (for all phases of the experiment) were not exposed to the ANNs

during the training phases. So when testing the trained ANNs, the non-training

members data were meant to represent the wider population. This meant that the

results achieved could be considered generalisable to a large degree (though there

were only 40 data sets in the non-training group).

5.8 Conclusion

In this chapter, the methodology relating to the current experiment has been de-

scribed. Firstly, the requirements and recruitment of participants for the experiment

were explained in section 5.3. The processing involved for the implementation of the
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keystroke dynamics and the �ngerprint recognition phases was described in sections

5.4 and 5.5 respectively, and included:

• The collection of raw data.

• The pre-processing of that data.

• The subsequent selection methods for extracting metrics from that data.

Importantly, it must be emphasised that the treatment of the keystroke dynamics

and �ngerprint feature data for the �rst two phases of the experiment were performed

to meet the requirements of the third phase (i.e. feature level data fusion). That

is, the data needed to be in a form that could be fused by a practical method.

In particular, the pre-processing and metrics selection methods developed for both

phases were (as far as is known) completely original and speci�cally designed for

application in this study.

The treatment of data for either of the two initial phases could have been di�erent

if the requirement had been for a uni-modal biometric system, or if data was to be

fused at a di�erent level, or by a di�erent method than that used in this experiment.

Finally, the �nal analysis was performed by ANNs to obtain recognition results

for both phases (i.e. the two individual biometric characteristics). The results for

phases 1 and 2 are presented in Chapter 6 sections 6.4.1 and 6.4.2 respectively, and

discussed in detail in Chapter 7 sections 7.2.1 and 7.2.2 respectively.

Following the discussion of phases 1 and 2, phase 3 (feature level fusion of the two

biometric characteristics) was discussed. The processing involved for the implemen-

tation of the two viable paradigms (complementary and cooperative) was described

in sections 5.6.2 and 5.6.3 respectively, and included:

• The data source for both paradigms.

• The selection method for extracting metrics from those data. This was appli-

cable for the cooperative paradigm only.

• The fusion methods for both paradigms (including the four stages involved for

the cooperative fusion approach).
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It is important to recognise that the methodology chosen for the selection of met-

rics (for the cooperative fusion approach), utilised an existing mathematical concept

(i.e. the Approximate Relative Local Gain). However, its use for cooperative fusion

of feature level data is (as far as is known) an original application. One issue with

this methodology is the required existence of weights from trained ANNs (from the

complementary data fusion approach). In some circumstances, the overheads associ-

ated with this aspect may make the application of this methodology inappropriate.

Finally, the �nal analysis was performed by ANNs to obtain recognition results

for the combined data fused at the feature level. The results for the data fusion

phase (for the complementary and cooperative paradigms) are presented in Chapter

6 sections 6.4.3.1 and 6.4.3.2 respectively, and discussed in detail in Chapter 7

sections 7.2.3.1 and 7.2.3.3 respectively.

During the performance of the experiment many choices were made in relation

to treatment of data. Therefore, the reasons why particular decisions were taken

were discussed, including those pertaining to experimental validity.

The next chapter discusses the �ndings from testing the trained ANNs with the

data �les obtained as described in this chapter.



Chapter 6

Research Results And Analysis

Method

6.1 Overview

This chapter begins by introducing classi�cation concepts for the analysis of au-

thentication outcomes (section 6.2). A description of the speci�c methodology used

to analyse the experimental results in the current study is then provided. This en-

tailed the use of Receiver Operating Characteristics (ROC) graphs. An explanation

of ROC analysis, and the reasons for utilising this methodology, are provided. Sec-

tion 6.3 then discusses how ROC analysis was applied to the data in this study. The

results for all phases of the experiment are then presented in section 6.4. Finally,

the conclusion summarises the chapter (section 6.5).

6.2 Classi�cation of Authentication Outcomes

6.2.1 Classi�cation Measurement

Formally, the classi�cation outcome for an authentication system is the likelihood

that two samples belong to the same individual (Maltoni et al., 2003). That is,

that both samples either belong to the same individual or they belong to di�erent

individuals.

317
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In a traditional password authentication system, the likelihood that two samples

belong to the same individual is either a perfect match (probability of 1) or a non-

match (probability of 0). That is, the result of comparing two such samples is a

discrete value in a binary domain.

However, biometric authentication systems cannot be expressed by such discrete

values, because biometric samples of the same characteristic, taken at di�erent times

from the same individual, rarely match perfectly. That is, there is usually some

degree of uncertainty. Typically, the likelihood that two samples belong to the same

individual is expressed as a probability score over the continuous interval [0, 1]. That

is, the result of comparing two such samples is a �oating point value in a continuous

domain.

In a binary domain, four possible classi�cations can be formally de�ned (Bradley,

1997; Fawcett, 2006; Flach, 2004):

1. True positive. This occurs when an instance/sample is a known member of a

class, and a classi�er correctly predicts membership of that class.

2. False positive. This occurs when an instance/sample is a known non-member of

a class, but a classi�er incorrectly predicts membership of that class�referred

to as a Type I error.

3. True negative. This occurs when an instance/sample is a known non-member

of a class, and a classi�er correctly predicts non-membership of that class.

4. False negative. This occurs when an instance/sample is a known member of

a class, but a classi�er incorrectly predicts non-membership of that class�

referred to as a Type II error.

These four classi�cations can be represented in a contingency table (also known

as a confusion matrix) as demonstrated in Figure 6.1.
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Figure 6.1: Contingency Table

The following explanations are provided to clarify the labels in Figure 6.1.

Class Labels:

ACTUAL CLASS refers to the class that an instance is known to be a member of. Its

status can be True, if it is known to be a member of the class; False, if it is

known to not be a member of the class.

PREDICTED CLASS refers to the class that a classi�er predicts the instance to be a

member of. Its status can be True, if the classi�er determines that the instance

is a member of the ACTUAL CLASS; False, if the classi�er determines that the

instance is not a member of the ACTUAL CLASS.

Class Instances:

TP is the total number of instances that are classi�ed as true positives.

FP is the total number of instances that are classi�ed as false positives�Type I

errors.

TN is the total number of instances that are classi�ed as true negatives.

FN is the total number of instances that are classi�ed as false negatives�Type II

errors.
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Column Totals:

T is the sum of the ACTUAL CLASS instances with True status, calculated using

Equation 6.1.

T = TP + FN (6.1)

F is the sum of the ACTUAL CLASS instances with False status, calculated using

Equation 6.2.

F = FP + TN (6.2)

Row Totals:

T′ (pronounced T prime) is the sum of the PREDICTED CLASS instances with True

status, calculated using Equation 6.3.

T ′ = TP + FP (6.3)

F′ (pronounced F prime) is the sum of the PREDICTED CLASS instances with False

status, calculated using Equation 6.4.

F ′ = FN + TN (6.4)

The following measurements or rates can be determined from the class labels

and instances, and the row and column totals indicated in Figure 6.1.

Rates:

• False positive rate (fpr) is the result of dividing the number of false positive

instances (FP) by the number of ACTUAL CLASS instances with False status

(F). It is calculated as demonstrated by Equation 6.5. This rate is also known

as the false alarm rate.

fpr = FP/F (6.5)
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• True positive rate (tpr) is the result of dividing the number of true positive

instances (TP) by the number of ACTUAL CLASS instances with True status

(T). It is calculated as demonstrated by Equation 6.6. This rate is also known

as the hit rate or recall.

tpr = TP/T (6.6)

• Precision (also known as the positive prediction value) can be calculated as

demonstrated by Equation 6.7.

Precision = TP/T ′ (6.7)

• Accuracy is the weighted average of the true positive instances (TP) and the

true negative instances (TN), and is calculated as according to Equation 6.8.

Accuracy = (TP + TN)/(T + F ) (6.8)

• Sensitivity is equivalent to the tpr, and is calculated using Equation 6.6.

Sensitivity = tpr = TP/T

• Speci�city is the compliment of the fpr. It can be calculated by two methods

as demonstrated by Equations 6.9 and 6.10.

Specificity = 1− fpr (6.9)

Specificity = TN/F (6.10)

Findings in biometrics research are typically expressed using the performance

metrics/variables known as the False Acceptance Rate (FAR) and the False Rejec-

tion Rate (FRR)1. These metrics/variables are related to the Type error de�nitions

mentioned above, and are respectively the Type I error rate and Type II error rate.

1Some researchers use the terms False Match Rate (FMR) and the False Non-Match Rate
(FNMR) respectively.
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That is, the FAR is the ratio of Type I errors; the FRR is the ratio of Type II

errors. The reason for using these particular metrics/variables or Type error rates is

because in authentication the interest is in measuring mis-classi�cation, rather than

correct classi�cation.

The two metrics/variables relate to the measurements listed above (derived from

Figure 6.1) as follows:

• The False Acceptance Rate (FAR) is equivalent to the false positive rate (fpr),

and is therefore calculated by Equation 6.5. That is,

FAR = fpr = FP/F

• The False Rejection Rate (FRR) is the compliment of the true positive rate

(tpr). It can be calculated by two methods as demonstrated by Equations 6.11

and 6.12.

FRR = 1− tpr (6.11)

FRR = FN/T (6.12)

As mentioned at the start of this section, authentication systems involving bio-

metrics do not typically deal with classi�er outcomes in the binary domain, but

rather the continuous domain (because of the degree of uncertainty). However, the

classi�cation measurements discussed in this section can be adapted for applications

where classi�er outcomes are in the continuous domain.

Given a classi�er outcome in the continuous domain, classi�cation necessitates

a subjective decision being made on whether or not the predicted outcome (from

testing a sample) should be accepted or rejected as being a member of the Actual

Class. This determination may be termed `the �nal classi�cation decision', and

typically involves the use of a threshold or cut-o� value that is applied to the classi�er

outcome. This threshold is often termed the `decision threshold'. The decision

threshold provides a cut-o� value that can be adjusted to allow for uncertainty, and

can be suitably determined for the particular application under consideration.
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The method adopted for determining the decision threshold in the current study

is described in section 6.3.4. The next section discusses an area of data analysis

particularly suitable for classi�er outcomes in the continuous domain, and facilitates

the determination of the performance metrics/variables discussed in this section.

6.2.2 Receiver Operating Characteristics (ROC) Graphs

A Receiver Operating Characteristics (ROC) graph provides a means for analysing

the performance of classi�ers (Fawcett, 2006). That is, when faced with the �nal

classi�cation decision based on the performance of classi�ers, ROC graphs provide

a graphical representation of their performance to assist classi�cation.

ROC graphs have historically been used to document the trade-o� between hit

rates (tpr) and false alarm rates (fpr) in signal detection theory (Swets, 1988).

More recently, ROC graphs have increasingly been employed in the machine learning

environment to provide a more accurate metric than previous classi�cation measures

(Provost et al., 1998). In machine learning, a classi�er is an algorithm that has been

trained on certain data; it is then tested on data it has not previously seen and its

classi�cation performance is assessed.

6.2.2.1 ROC space

A classi�er's performance can be represented in a two dimensional coordinate sys-

tem, where the false positive instance is plotted along the x axis and the true positive

instance is plotted along the y axis. The origin has coordinates (0, 0), the maximum

value on the x axis has coordinates (1, 0), the maximum value on the y axis has co-

ordinates (0, 1), and therefore the maximum value at the termination of the major

diagonal has coordinates (1, 1).

The area encompassed within these coordinate boundaries is known as ROC

space2 (refer Figure 6.2). Each point plotted in ROC space (referred to as an

operating point) represents the coordinate values of a false positive/true positive

(FP, TP ) pair, and corresponds to the classi�er's performance.

2Note, this area also denotes a unit square.
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Figure 6.2: ROC Space

Figure 6.3 demonstrates the performance of four hypothetical classi�ers A, B,

C, and D, showing their corresponding coordinate values. Classi�ers A, B, C, and

D represent the outcome of binary classi�cation because there is just one operating

point for each classi�er.

ROC graphs also allow for the analysis of the performance of classi�ers that

produce continuous output. This is achieved by applying an adjustable determinant

value to the classi�er output, to obtain operating points�i.e. (FP, TP ) pairs�

whose coordinate values vary as the adjustable determinant value is incremented

from 0.0 to 1.0 by an arbitrary amount.

This adjustable determinant value3 is often referred to as a threshold but is not

referred to as such here, so as not to confuse this value with the decision threshold

(which is used when making the �nal classi�cation decision). Hereafter in this

document, the adjustable determinant value will be referred to as the AD value.

3Note that the adjustable determinant value is a variable whose successive values produce clas-
si�er outcomes (coordinates) corresponding to individual operating points�i.e. (FP, TP ) pairs.
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Figure 6.3: Binary Classi�ers

There are a number of properties associated with ROC graphs in ROC space

(Bradley, 1997; Fawcett, 2006):

• The operating point (0, 0) means that the classi�er has predicted zero false

positives, and has also predicted zero true positives. That is, no instances

(whether they are known members of the class or not) have been predicted to

be members of the class. Typically, operating points that occur in the lower

left region of an ROC graph (but above and left of the major diagonal) are

considered to be `conservative', because the number of acceptances (whether

true or not) tend to decrease as the AD value increases (toward 1.0). Oper-

ating point C in Figure 6.3 could be considered an example of conservative

classi�cation.

• The operating point (1, 1) means that the classi�er has predicted 100% false

positives, and also predicted 100% true positives. That is, all instances (whether

they are actually members of the class or not) have been predicted to be mem-

bers the class. Typically, operating points that occur in the upper right region
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of an ROC graph (but above and left of the major diagonal) are considered to

be `liberal', because the number of acceptances (whether true or not) tend to

increase as the AD value decreases (toward 0.0). Operating point B in Figure

6.3 could be considered an example of liberal classi�cation.

• The operating point (0,1) means that the classi�er has demonstrated perfect

prediction. That is, the classi�er has correctly predicted 100% True Positives

and 0% False Positives. This is the best possible outcome, because there have

been no instances of incorrect prediction. Typically, operating points that

occur in the top left region of an ROC graph demonstrate `good' prediction

performance or classi�cation. Operating point A in Figure 6.3 could be con-

sidered an example of good classi�cation.

• Operating points whose predicted coordinate values lie along the major di-

agonal (from (0, 0) to (1, 1)) represent random classi�cations. That is, they

are equally likely to have been incorrectly predicted as they are to have been

correctly predicted. Operating point D in Figure 6.3 could be considered an

example of random classi�cation.

• Operating points whose predicted coordinate values lie below the major diag-

onal represent worse than random classi�cation.

Plotting numerous operating points in ROC space (by applying an AD value),

can hypothetically be viewed as forming an ROC curve. Figure 6.4 illustrates an

example of a ROC curve which demonstrates very good classi�cation.

The granularity of an ROC curve will be dependent on the number of AD values

used to produce the operating points. If the AD value is incremented at a �ne

resolution, an ROC curve can be accurately estimated. For example, at a resolution

of 100 the AD value is incremented by 0.01, which will allow for a �ne enough

granularity to produce an accurately representative ROC curve.
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Figure 6.4: ROC Curve

The reasons for utilising ROC curves in the analysis of this study's experimental

results are:

• Testing involved applying test samples to the trained ANNs for all training

group members, which produced continuous data output4. By applying an AD

value to each ANN output, an ROC curve could be obtained for each training

group member.

• ROC curves are ideal for representing continuous data. By their very na-

ture, ROC curves demonstrate the trade-o� between false positive and true

positive instances (Bradley, 1997; Fawcett, 2006; Greiner et al., 2000). This

can be helpful in determining the `best' decision threshold to utilise for �nal

classi�cation.

4Note that as described in sections 5.4.5.2 and 5.5.6.2, each training group member had one
test �le consisting of 100 of their own samples (tested for true positives) and 10,500 samples from
the other 49 training group members and the 40 non-training group members (tested for false
positives).
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• The representation of data in ROC curves allows for the extraction of other

information, which facilitates further analysis. In particular, there are two

statistics (important to this study) that can be extracted. These are the area

under the ROC curve and the optimal operating point (refer sections 6.2.2.2

and 6.2.2.3 respectively).

The next section discusses the area under the ROC curve, its possible uses, and

presents a method for its calculation.

6.2.2.2 Area Under The ROC Curve

When considering a classi�er's performance, it can be useful to obtain a summary

statistic that represents its overall classi�cation performance (Greiner et al., 2000).

This could facilitate the comparative performance of one classi�er with that of an-

other classi�er. One such summary statistic, well documented in the literature, is

termed the area under the ROC curve (abbreviated to AUC).

In section 6.2.2.1 a description of the boundaries of ROC space was presented;

these boundaries denote the unit square. Therefore, any statistic calculated to

represent the area under an ROC curve must be in the continuous interval [0, 1].

As described in section 6.2.2.1, the area below and to the right of the major di-

agonal demonstrates random or less than random classi�cation. This region equates

to an area of 0.5, and so any classi�er that produces an AUC value less than or

equal to 0.5 could be considered non-informative (Greiner et al., 2000).

In fact, Swets (1988) proposed a possible scale to describe a classi�er's perfor-

mance utilising the AUC statistic (refer Table 6.1).

Statistic Description

AUC = 1 Perfect
0.9 < AUC < 1.0 Highly Accurate
0.7 < AUC ≤ 0.9 Moderately Accurate
0.5 < AUC ≤ 0.7 Less Accurate
0.0 ≤ AUC ≤ 0.5 Non-Informative

Table 6.1: AUC Statistic Decriptions
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The ranges of the Statistic in Table 6.1 (column 1) conform with the concept of

the area of a unit square being no greater than 1.0, and the area below the major

diagonal being between 0.0 and 0.5.

Perfect classi�cation occurs if the AUC equals 1.0. The other ranges nominated

in Table 6.1 suggest possible descriptions for specifying the performance of a classi�er

from Highly Accurate to Non-Informative.

Equations 6.13, 6.14, and 6.15 show the formulae for calculating the AUC, using

the trapezoidal integration method proposed by Bradley (1997).

AUC =
∑

i

{
(tpri ×4fpr) +

1

2
(4tpr ×4fpr)

}
(6.13)

where

4fpr = fpri − fpri−1 (6.14)

4tpr = tpri − tpri−1 (6.15)

Figure 6.5 illustrates the ROC curves of two classi�ers (A and B) for comparison.

It can be seen that classi�er A, which could be described as highly accurate (with

an area of approximately 0.93), generally performed better than classi�er B, which

could be described as moderately accurate (with an area of approximately 0.86).

Note that this does not necessarily mean that classi�er A performed better than

classi�er B under all circumstances. From Figure 6.5 it can discerned that classi�er

B in fact out performed classi�er A when the False Positive Rate is greater than

approximately 0.23. Of course, a False Positive Rate of 0.23 is unlikely to be practical

for authentication purposes.

Nonetheless, Figure 6.5 highlights a limitation of the AUC statistic when com-

paring the performance of di�erent classi�ers. The statistic is a single value and

attributes equal weighting to all parts under the curve. It is therefore possible that

the comparative performance of two classi�ers, using the AUC statistic, will be

non-signi�cant if they di�er in an area of practical relevance (Greiner et al., 2000).
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Figure 6.5: Comparison of AUC for Two Classi�ers

This suggests it is doubtful that the AUC can be used to show signi�cant ev-

idence of comparative accuracy (or infer experimental proof) when comparing the

performance of two or more classi�ers (Provost et al., 1998). However, the statistic

may be justi�ably used as indicative, in the broader sense, of better performance.

For example, classi�er A generally performed better than classi�er B.

Because of this limitation, the AUC values (as measures of accuracy) for the

training group members in this study were used only to help determine the most

appropriate decision threshold for presentation of results (refer section 6.3.1).

The next section discusses the concept of the optimal operating point, what it

is typically used for, and possible methods for its calculation.

6.2.2.3 Optimal Operating Point

The Optimal Operating Point (abbreviated to OOP) is that operating point on the

ROC curve that indicates optimal performance. The question is, what constitutes

optimal performance? The answer depends on the application to which the classi�er

is to be applied.
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For pro�t-loss (or bene�t-cost) applications, the OOP will be that operating

point which provides the best trade-o� between pro�t and loss (or bene�t and cost).

The task is to determine the point at which the tpr and the fpr are both optimised.

This typically occurs when the number of true positives (tpr) is maximised and

the number of false positives (fpr) is minimised. The operating point (on the

ROC curve) closest to the point (0,1) represents the best classi�cation (refer section

6.2.2.1), and therefore is most likely to be determined as the OOP for these types

of applications.

For authentication purposes (using biometrics), the task is not as straightfor-

ward. Theoretically, it is still the objective to �nd a point where the tpr is max-

imised and the fpr is minimised. However, the primary objective is to reduce the

fpr (i.e. the number of false positives) as much as possible; this typically eventuates

in a decrease in the tpr (i.e. the number of true positives). To achieve reduction

in the fpr, means nominating an operating point (on the ROC curve) closer to the

point (0,0)�that is, moving away from the point (0,1) toward the origin. The degree

to which the fpr is reduced (and consequently the tpr is decreased) will depend on

the speci�c application.

As discussed in section 6.2.1, the performance metric far is equivalent to the

fpr and the performance metric frr is the compliment of the tpr. So relating the

discussion in the previous paragraph to these performance metrics, reducing the

far is likely to increase the frr. The task then is to determine the operating point

that reduces the far as much as is practicable, whilst attempting to maintain the

frr within an acceptable limit. Again, the limit to which the frr is permitted to

increase will depend on the speci�c application.

Assuming an ROC curve with no discontinuities and shaped similar to those

presented to this point in the discussion, there are mathematical methods for deter-

mining the turning point of a curve (Greiner et al., 2000). Let us further assume

that this turning point will be the closest point (on the ROC curve) to the point

(0,1). If a formula for the curve can be determined, then the �rst derivative can be

used to �nd the turning point (given the previous assumptions). If only raw data
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is available, numerical di�erentiation may prove successful in determining a turning

point. However, there may be multiple turning points in a curve; also the above

assumptions may not always be applicable (as is evident with classi�ers A and B in

Figure 6.5). In such cases, other steps would need to be taken to �nd the optimal

operating point.

Another way to determine the OOP is to use the iso-performance lines of an ROC

graph (Flach, 2004; Hong, 2009). These lines are essentially tangents to the ROC

curve, and can be used to determine the OOP according to the slope of the tangent

at a particular operating point. Hong (2009) proposed using iso-performance lines to

re�ne the accuracy statistic (refer Equation 6.8) which can then be used to identify

the OOP (for bene�t-cost applications).

However, a much simpler method for determining the OOP is to use a distance

measurement. In section 6.2.2.1 it was stated that the point (0,1) in ROC space

demonstrates the best possible classi�er performance. This infers that an operating

point on the ROC curve closest to the upper left corner of the unit square (i.e. the

point (0,1)) optimises performance (Greiner et al., 2000). That is, the operating

point (on the ROC curve) closest to the point (0,1) determines the OOP, because

the classi�er performed better at this point than at any other operating point on the

ROC curve. A simple distance measure can be used to calculate distances from all

operating points on the ROC curve to the point (0,1); the smallest distance would

indicate the OOP.

The next section describes the calculation of the operating points (section 6.3.2)

and AUC (section 6.3.3) as implemented for this study. Also discussed is how the

AUC and the OOP were utilised to help determine the decision threshold (sec-

tion 6.3.4). These tasks were conducted for all participants, for each phase of

the experiment�including keystroke dynamics, �ngerprint recognition, and the two

paradigms for data fusion (complimentary and cooperative). Once established, the

decision threshold was used to obtain the results that are then presented in section

6.4 and discussed in Chapter 7.
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6.3 Applying ROC In This Study

6.3.1 Introduction

Chapter 5 discussed in detail the experimental procedures used in this study for user

authentication via keystroke dynamics (section 5.4), �ngerprint recognition (section

5.5), and data fusion (section 5.6).

As discussed in sections 5.4.5.2 and 5.5.6.2, one testing �le was created for each

training group member, with each �le consisting of:

• 100 test samples belonging to the training group member that the ANN had

been trained to recognise.

• 10,500 test samples from the other 49 training group members and the 40

non-training group members.

Testing involved applying a training group member's test �le (with all 10,600

samples) to the ANN that had been trained to recognise their samples. For this

process, the saved weights from the training phase (for that training group member)

were loaded by the ANN, and each test sample was then evaluated by the ANN

(using the saved weights), and a probability score for each was produced. This score

represented the likelihood that a test sample belonged to the training group member

that the ANN had been trained to recognise.

So, the result was an ANN output �le consisting of its predictions for each sample

applied to that ANN. This was done for all training group members, so there were

50 such ANN output �les.

The goal of testing was to determine the correct recognition or rejection of a test

sample applied to a trained ANN. Ideally, if a test sample was known to belong to a

training group member, then when that sample was applied to their trained ANN,

it could be expected that the ANN output would indicate the sample did indeed

belong to that training group member. Conversely, if a test sample was known to

not belong to any training group member, then when that sample was applied to

any of the trained ANNs, it could be expected that the ANN output would indicate

the sample did not belong to any training group member.
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There are two issues here that need clari�cation:

1. The ANN output is a prediction only. It does not necessarily mean that the

ANN has predicted correctly.

2. The ANN output (prediction) is a probability score in the continuous interval

[0, 1], where 0 indicates the lowest probability of the sample matching that of

a training group member and 1 indicates the highest probability of the sample

matching that of a training group member.

Given the probability score for an ANN output, a method was required to make a

�nal classi�cation decision. That is, to de�nitively decide (based on the probability

score) whether to accept or reject the sample as belonging to the training group

member that the ANN had been trained to recognise.

An option is to use AUC and OOP calculations to assist in making this decision.

However, as demonstrated in sections 6.2.2.2 and 6.2.2.3 the AUC and OOP had

the following limitations:

• The AUC can only be justi�ably used to compare whether one classi�er per-

formed `better' than another classi�er. It can not infer experimental proof

when comparing the performance of two or more classi�ers.

• For authentication purposes, the OOP will most probably not be the closest

operating point (on the ROC curve) to the point (0, 1).

Though these limitations exist for the speci�c circumstances discussed, and there-

fore do impose some restrictions on the use of the AUC and OOP for analysis of

results in the current experiment, they may still have the following possible appli-

cations:

1. The AUC can be used as a con�dence indicator of an individual classi�er

performance.

2. It is still possible to determine an operating point on a ROC curve (but possibly

not the OOP) to meet the conditions required for authentication purposes.
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Before describing how the AUC and OOP were utilised in this study (refer sec-

tions 6.3.3 and 6.3.4), the next section describes the method used to calculate the

operating points to obtain an ROC curve for each training group member. This is

described �rst because the operating points that form an ROC curve are required

for the calculation of the AUC and the OOP.

6.3.2 Calculation of ROC Operating Points

Algorithm 6.1 demonstrates the method used to determine the operating points to

represent each training group member's classi�er (i.e. trained ANN) output. Recall

that the number of samples tested for correct acceptance (i.e. true positives) was 100

per training group member, and the number of samples tested for false acceptance

(i.e. false positives) was 10,500 per training group member (refer sections 5.4.5.2

and 5.5.6.2).

For each AD value5, all 10,600 samples were applied to a trained ANN (for each

training group member). Note that the �rst 100 samples, in a test �le, were the

samples tested for correct acceptance (refer Algorithm 6.1 Steps 2�8), and the next

10,500 samples were the samples tested for false acceptance (refer Algorithm 6.1

Steps 10�16).

If the ANN output was greater than or equal to the current AD value, then

that test sample was considered a member of the class that it was being tested

against (refer Algorithm 6.1 Steps 3�5 and Steps 11�13). From this prediction, an

accumulation of such occurrences was obtained, and the resultant metric determined

(refer Algorithm 6.1 Steps 8 and 16).

As an example of the representation provided by an ROC curve, Figure 6.6

presents a graph from the keystroke dynamics testing phase for participant 1. Be-

cause of the resolution of the AD value, which determined 101 operating points, an

ROC curve can be accurately estimated. This is demonstrated in Figure 6.6 by the

operating points being plotted, and a line joining the points to form the ROC curve.

5Note that the AD value is incremented by 0.01 (refer Algorithm 6.1 Step 17) from 0.0 to 1.0
inclusive (refer Algorithm 6.1 Step 1). This determined 101 di�erent AD value, which resulted in
101 operating points.
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Algorithm 6.1 Calculation of ROC Operating Points

Let netV alues be an array containing the 10, 600 output values from testing the
trained ANNs.
Let truePositives ← 100 corresponding to the �rst 100 test samples in the
netV alues array for testing correct recognition.
Let falsePositives ← 10, 500 corresponding to the remaining test samples in the
netV alues array for testing false acceptances.
Let ADV be a variable representing the AD value that increments from 0.0 to 1.0
in increments of 0.01.
Let tpr be an array containing the True Positive instances as ADV varies from 0.0
to 1.0 in increments of 0.01.
Let fpr be an array containing the False Positive instances as ADV varies from 0.0
to 1.0 in increments of 0.01.
Let count ← 0 be a counter variable for accumulating the number of netV alues
instances that meet the threshold condition.
Let i ← 0 be a loop control variable for accessing the appropriate elements of
netV alues.
1: For ADV ← 0.0 to 1.0 do
2: For i← 0 to truePositives do
3: If (netV alues[i] > ADV )
4: count← count+ 1
5: End If
6: i← i+ 1
7: End i For
8: tpr[i]← count/truePostivies
9: count← 0
10: For i← truePositives to falsePositives do
11: If (netV alues[i] > ADV )
12: count← count+ 1
13: End If
14: i← i+ 1
15: End i For
16: fpr[i]← count/falsePostivies
17: ADV ← ADV + 0.01
18: End ADV For
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Figure 6.6: ROC Curve for Participant 1

6.3.3 Calculation of The Area Under The ROC Curve

Algorithm 6.2 shows the implementation of Equations 6.13, 6.14, and 6.15 for deter-

mining the AUC for each training group member. As mentioned in section 6.2.2.2,

the method is that proposed by Bradley (1997).

The AUC values calculated via this method are presented in the tables of statis-

tics in sections 6.4.1, 6.4.2 and 6.4.3.

In the next section, the determination of a decision threshold (for each partici-

pant, for each phase of the experiment) is discussed. The decision threshold allows

for the nomination of an operating point at which the analysis of the performance of

each classi�er can be observed. For the determination of decision thresholds, points

1 and 2 highlighted in section 6.3.1 (at the bottom of page 334) were applied. As

with the AUC values, the decision thresholds are presented in the tables of statistics

in the sections 6.4.1, 6.4.2 and 6.4.3.
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Algorithm 6.2 Area Under The ROC Curve Calculation
Let tpr be an array containing the stored True Postive values as the ADV was
varied from 0.0 to 1.0 (inclusive) in increments of 0.01.
Let fpr be an array containing the stored False Postive values as the ADV was
varied from 0.0 to 1.0 (inclusive) in increments of 0.01.
Let length← 101 be the length of the two arrays tpr and fpr.
Let deltaTP be a temporary variable for storing the calculated change between
successive tpr values.
Let deltaFP be a temporary variable for storing the calculated change between
successive fpr values.
Let AUC be a variable for storing the calculated area under the ROC curve.
Let i be a loop control variable to access successive elements of tpr and fpr.

1: For i← 1 to length do
2: deltaTP ← tpr[i]− tpr[i− 1]
3: deltaFP ← fpr[i]− fpr[i− 1]
4: AUC ← AUC + ((tpr[i] ∗ deltaFP ) + ((deltaTP ∗ deltaFP )/2.0)))
5: i← i+ 1
6: End i for

6.3.4 Calculation of Decision Threshold

According to Bradley (1997), the visual representation of classi�er performance pro-

vided by ROC graphs facilitates the determination of a decision threshold. For many

applications the decision threshold is the OOP. That is, the operating point that

results in the `best' performance of the classi�er. Of course, best performance is

subjective depending on the application area (as discussed in the section 6.2.2.3).

Given the previously stated provisions, a suitable decision threshold can be deter-

mined for authentication purposes. The decision threshold should return the lowest

fpr, but with an acceptable tpr. This is a typical trade-o� situation when presenting

results in a continuous domain for authentication purposes (Wayman et al., 2005).

Note that when the fpr decreases (as the AD value approaches 1.0), the tpr

also typically decreases. As explained in section 6.2.1, the fpr is presented as

the performance metric far, and the compliment of the tpr is presented as the

performance metric frr (as demonstrated by Equation 6.11�i.e. frr = 1 − tpr).

Thus, if the tpr decreases, the frr increases.

So the objective was to obtain the lowest far whilst still achieving an acceptable

frr. This entailed setting an acceptable upper limit on the frr, as it was more

suitable to allow the frr (rather than the far) to achieve higher values.
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Thus it seemed appropriate to focus attention on the true positive instances

when determining the decision threshold (because the true positive instances have

a linear relationship with the frr). There were 100 samples available (per training

group member) for testing true positive instances. Where possible it was preferable

that the number of true positives was greater than 90. The compliment of this

means that the number of false rejections would be no more than 10 (though this

was unattainable in some cases).

By calculating the mean of the ANN outputs for all 100 true positive test sam-

ples, a true positive mean (TPmean) was obtained for each training group member.

Next, a con�dence level was determined (for each training group member) and ap-

plied to their TPmean. In determining a con�dence level for each training group

member, their AUC value was utilised because it was a measure of con�dence in

the performance of the classi�er when their unseen data was applied to it.

The decision to utilise the AUC values (instead of the TPmean values) as a

measure of con�dence, was taken for two reasons:

1. After comparing the di�erences between the AUC values and the TPmean

values for the keystroke dynamics testing output (refer Table 6.3), it was ev-

ident that the di�erences between them were generally inconsiderable. With

the average of the AUC values being 0.9725 and the average of the TPmean

values being 0.9535, the di�erence of the two averages was 0.0189 (with the

AUC average being the larger). So there was every reason to lean toward

using the AUC values as con�dence indicators.

2. From column four in Table 6.3, there are only 8 participants having the AUC

values less than the TPmean values. This is an indication of the AUC statistic

being a more discriminative measurement than the TPmean. Logically, this

holds true as well, since the AUC is a statistic from testing both true positive

and false positive samples (whereas the TPmean is calculated from the true

positive samples only).

Note, that all values in Table 6.3 have been rounded to four decimal places.
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Participant Area Under
Curve (AUC)

True Positive
Mean (TPMean)

Di�erence

1 0.9914 0.9893 0.0021
2 0.9566 0.9533 0.0033
3 0.8806 0.8589 0.0217
5 0.9979 0.9947 0.0031
7 0.9932 0.9881 0.0051
9 0.9616 0.9627 -0.0012
12 0.9199 0.9398 -0.0199
14 0.9952 0.9865 0.0087
16 0.9944 0.9712 0.0232
18 0.9997 0.9986 0.0011
20 0.9937 0.9766 0.0170
21 0.9827 0.9670 0.0157
23 0.9753 0.9554 0.0199
24 0.9528 0.9577 -0.0049
25 0.9906 0.9537 0.0369
27 0.9995 0.9911 0.0084
29 0.9412 0.9324 0.0088
32 0.9795 0.9431 0.0365
34 0.9992 0.9800 0.0191
36 0.9921 0.9829 0.0092
38 0.9969 0.9903 0.0066
40 0.9983 0.9993 -0.0009
41 0.9871 0.9565 0.0306
43 0.8626 0.8638 -0.0012
45 0.9888 0.9986 -0.0099
46 0.9962 0.9923 0.0039
47 0.9822 0.9541 0.0282
49 0.9454 0.9750 -0.0296
52 0.9999 0.9983 0.0016
54 0.9856 0.9646 0.0210
56 0.9755 0.9171 0.0584
58 0.9518 0.9188 0.0330
60 0.9976 0.9784 0.0192
61 0.9425 0.8405 0.1019
63 0.9556 0.9330 0.0226
65 0.9797 0.8951 0.0846
67 0.9630 0.9051 0.0579
68 0.9723 0.9475 0.0248
69 0.9923 0.9708 0.0214
72 0.9985 0.9935 0.0050
74 0.8683 0.8454 0.0229
76 0.9876 0.9737 0.0139
78 0.9781 0.9446 0.0335
80 0.9726 0.9538 0.0188
81 0.9544 0.8973 0.0571
83 0.9838 0.9625 0.0213
85 1.0000 0.9966 0.0034
87 0.9554 0.9259 0.0295
89 0.9836 0.9842 -0.0006
90 0.9703 0.9170 0.0533

Average 0.9725 0.9535 0.0189

Table 6.3: Comparison Between AUC and TPMean for Keystroke Dynamics
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Given the �gures in Table 6.3, it seemed appropriate to use the AUC values to

indicate a level of con�dence when determining a decision threshold. For the cur-

rent study, the con�dence levels were varied because of the variability demonstrated

by the AUC values for each training group member (particularly for keystroke dy-

namics). Accordingly, the con�dence levels were allocated as demonstrated in Table

6.4.

Area Under Curve Con�dence Level

AUC > 0.95 0.0500
0.90 < AUC ≤ 0.95 0.0625
0.85 < AUC ≤ 0.90 0.0750

AUC ≤ 0.85 0.0875

Table 6.4: Con�dence Levels

Note that no AUC value in Table 6.3 fell below 0.85, and therefore the intervals

speci�ed in the �rst column of Table 6.4 were limited to operands greater than 0.85.

It should be apparent that given a di�erent application or experiment, the speci�ed

ranges could be adjusted and/or extended in a similar fashion depending on the

results. Also, the con�dence levels (in the second column of Table 6.4) could be

allocated di�erently, according to the application to which the scheme was being

applied.

Adopting a traditional statistical approach, a threshold can be determined by

subtracting the con�dence level from the mean�in our case, the TPmean�(Zikmund,

1997). With the TPmean values and the con�dence levels now available, a decision

threshold could be determined for each training group member. In each case, this

was a simple matter of subtracting their con�dence level from their TPmean, and

applying successive (fpr,tpr) pairs to a decision criteria at successive AD values.

Recall that the AD value (adjustable determinant value) was used in determining

each operating point in an ROC curve.

It is important to understand that if the con�dence level increases in magnitude,

a greater quantity is subtracted from the TPmean (which lowers the AD value by a

larger amount). That is, higher con�dence levels actually indicate lower con�dence6.

6Though this may seem counter-intuitive, it is necessary because if the AUC is low�indicating
poorer performance�then a greater quantity should be subtracted from the TPmean to lower the
AD value, thus indicating lower con�dence.
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As demonstrated in Algorithm 6.3, the task then was to determine which (fpr,tpr)

pair met the criteria for selection of the decision threshold (i.e. OOP). This entailed

successively applying all pairs of operating points to the decision criteria. If the

decision criteria was met (Step 2 Algorithm 6.3), the current fpr value was stored

along with the index number of its occurrence in the array storing all fpr values.

To meet the decision criteria, the current fpr had to be smaller than the previ-

ously stored smallest fpr, and the current tpr had to be greater than the previously

determined con�dence value. Thus at the end of iteration, the operating point with

lowest far (with an acceptable frr) was obtained.

Algorithm 6.3 Calculation of Decision Threshold
Let tpr be an array containing the stored True Positive values obtained as per
Algorithm 6.1.
Let fpr be an array containing the stored False Positive values obtained as per
Algorithm 6.1.
Let length← 101 be the length of the two arrays tpr and fpr.
Let ADV ← (TPmean − Confidence level) be the adjustable determinant value
used in the selection criteria.
Let smallestFpr ← 1.0 be a variable for storing successive smallest fpr value.
Let count be a variable for storing the array index corresponding to the smallest
fpr value.
Let i be a loop control variable to access successive elements of tpr and fpr.

1: For i← 0 to length do
2: If fpr[i] < smallestFpr AND tpr[i] > ADV
3: smallestFpr ← fpr[i]
4: count← i
5: End If
6: End i for

Once the decision threshold (OOP) was determined as demonstrated in Algo-

rithm 6.3, the stored index number (for that OOP) was used to extract its corre-

sponding (fpr, tpr) coordinate pair. This coordinate pair was therefore the operating

point that demonstrated best classi�er performance for authentication purposes7.

The following sections present tables with the relevant data for the AUC val-

ues, the TPmean values, the con�dence levels, and the decision threshold for each

participant, for all phases of the experiment. Also presented are the performance

metrics (far and frr) at the determined thresholds.

7With the far being equivalent to the fpr and the frr being the compliment of the tpr, the
performance metrics were thus obtained.
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6.4 Results

In this section, the results are presented for the keystroke dynamics (section 6.4.1),

�ngerprint recognition (section 6.4.2), and feature level data fusion (section 6.4.3)

phases of the experiment. Results presented for the data fusion phase cover the

two paradigms�complimentary and cooperative�discussed in Chapter 5. For the

cooperative paradigm, the results are presented for the four stages (i.e. at the four

percentages) described in section 5.6.3.

Findings are demonstrated by the use of tables, with two tables being presented

for each of the phases, paradigms, and stages of the experiment. Tables 6.5, 6.7,

6.9, 6.11, 6.13, 6.15, 6.17 are presented to demonstrate the statistics used in the

determination of the decision threshold (at which results were determined and then

presented); this is done for completeness. Each table presents the relevant data

pertaining to each training group member (listed by row) and the following column

format:

1. Participant number.

2. The area under the ROC curve�to 8 decimal places�refer sections 6.2.2.2

and 6.3.3.

3. The true positive mean�to 8 decimal places�refer section 6.3.4.

4. The con�dence level�to 4 decimal places�refer section 6.3.4.

5. The adjustable determinant value�to 8 decimal places�refer sections 6.2.2.1

and 6.3.4.

6. The decision threshold�to 2 decimal places��refer sections 6.2.2.3 and 6.3.4.

Tables 6.6, 6.8, 6.10, 6.12, 6.14, 6.16, 6.18 are presented to demonstrate the re-

sults achieved at the determined decision threshold. Each table presents the relevant

results pertaining to each training group member (listed by row) and the following

column format:

1. Participant number.

2. The True Positive Rate�to 2 decimal places�refer section 6.2.1.
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3. The False Rejection Rate�to 2 decimal places�refer section 6.2.1.

4. The Number of False Rejections.

5. The False Positive Rate�to 8 decimal places�refer section 6.2.1.

6. The Number of False Acceptances.

The last two rows of each table present the average and standard deviation for

relevant columns (if applicable).

The following sections present the tabled statistics and results in the following

order:

• Section 6.4.1 presents the keystroke dynamics statistics in Table 6.5 (page 345)

and the results achieved in Table 6.6 (page 346).

• Section 6.4.2 presents the �ngerprint recognition statistics in Table 6.7 (page

351) and the results achieved in Table 6.8 (page 352).

• Section 6.4.3 presents data fusion outcomes for both paradigms�complimentary

and cooperative:

� Section 6.4.3.1 presents the complimentary data fusion statistics in Table

6.9 (page 353) and the results achieved in Table 6.10 (page 354).

� Section 6.4.3.2 presents cooperative data fusion outcomes for the following

four stages:

∗ Stage 1 statistics (i.e. 40% of the available data) in Table 6.11 (page

355) and the results achieved in Table 6.12 (page 356).

∗ Stage 2 statistics (i.e. 50% of the available data) in Table 6.13 (page

357) and the results achieved in Table 6.14 (page 358).

∗ Stage 3 statistics (i.e. 60% of the available data) in Table 6.15 (page

359) and the results achieved in Table 6.16 (page 360).

∗ Stage 4 statistics (i.e. 70% of the available data) in Table 6.17 (page

361) and the results achieved in Table 6.18 (page 362).
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6.4.1 Keystroke Dynamics (Phase 1)

Participant Area Under

ROC Curve

True Positive

Mean

Con�dence

Level

Adjustable

Determinant

Value

Decision

Threshold

1 0.99135190 0.98927652 0.0500 0.93927652 0.96

2 0.95659857 0.95334717 0.0500 0.90334717 0.97

3 0.88062905 0.85889453 0.0750 0.78389453 0.86

5 0.99785381 0.99474991 0.0500 0.94474991 0.98

7 0.99322429 0.98808178 0.0500 0.93808178 0.99

9 0.96157905 0.96274334 0.0500 0.91274334 0.95

12 0.91994667 0.93981623 0.0625 0.87731623 0.97

14 0.99516429 0.98649916 0.0500 0.93649916 0.93

16 0.99442571 0.97118196 0.0500 0.92118195 0.95

18 0.99973810 0.99862410 0.0500 0.94862410 0.99

20 0.99369381 0.97664731 0.0500 0.92664731 0.98

21 0.98268905 0.96702640 0.0500 0.91702640 0.97

23 0.97532000 0.95544168 0.0500 0.90544168 0.96

24 0.95277429 0.95765571 0.0500 0.90765571 0.94

25 0.99058143 0.95367530 0.0500 0.90367530 0.96

27 0.99949143 0.99109513 0.0500 0.94109513 0.96

29 0.94121762 0.93243909 0.0625 0.86993909 0.92

32 0.97951571 0.94305124 0.0500 0.89305124 0.98

34 0.99918000 0.98004077 0.0500 0.93004077 0.95

36 0.99211571 0.98287234 0.0500 0.93287234 0.96

38 0.99692810 0.99031712 0.0500 0.94031712 0.99

40 0.99834524 0.99927547 0.0500 0.94927547 0.99

41 0.98708762 0.95652380 0.0500 0.90652380 0.97

43 0.86263333 0.86382857 0.0750 0.78882857 0.99

45 0.98877381 0.99863071 0.0500 0.94863071 0.99

46 0.99621143 0.99234570 0.0500 0.94234570 0.96

47 0.98223762 0.95406353 0.0500 0.90406353 0.89

49 0.94541667 0.97502202 0.0625 0.91252202 0.94

52 0.99994952 0.99833596 0.0500 0.94833596 0.98

54 0.98558571 0.96455751 0.0500 0.91455750 0.94

56 0.97548333 0.91711252 0.0500 0.86711252 0.92

58 0.95181810 0.91879129 0.0500 0.86879129 0.93

60 0.99755619 0.97835570 0.0500 0.92835570 0.97

61 0.94248857 0.84054680 0.0625 0.77804680 0.95

63 0.95563619 0.93299954 0.0500 0.88299954 0.89

65 0.97971571 0.89510313 0.0500 0.84510313 0.88

67 0.96299048 0.90508670 0.0500 0.85508670 0.88

68 0.97225952 0.94748348 0.0500 0.89748348 0.98

69 0.99225190 0.97082952 0.0500 0.92082952 0.95

72 0.99848952 0.99350247 0.0500 0.94350247 0.98

74 0.86826095 0.84537021 0.0750 0.77037021 0.82

76 0.98762333 0.97372189 0.0500 0.92372189 0.94

78 0.97809667 0.94457460 0.0500 0.89457460 0.95

80 0.97258619 0.95375459 0.0500 0.90375459 0.97

81 0.95439667 0.89733494 0.0500 0.84733494 0.98

83 0.98380381 0.96253737 0.0500 0.91253737 0.97

85 1.00000000 0.99663067 0.0500 0.94663067 0.88

87 0.95541905 0.92590986 0.0500 0.87590986 0.94

89 0.98358381 0.98422130 0.0500 0.93422130 0.97

90 0.97026905 0.91696189 0.0500 0.86696189 0.91

Average 0.97245977 0.95353777 � 0.90103777 0.9486

SD 0.03232844 0.04117834 � 0.04586111 0.03811958

Table 6.5: Keystroke Dynamics Statistics for Threshold Calculation
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Participant True

Positive

Rate

False

Rejection

Rate

Number of

False

Rejections

False

Acceptance

Rate

Number

of False

Acceptances

1 0.94 0.06 6 0.01561905 164

2 0.91 0.09 9 0.06533333 686

3 0.79 0.21 21 0.12600000 1323

5 0.95 0.05 5 0.00466667 49

7 0.96 0.04 4 0.00247619 26

9 0.93 0.07 7 0.05200000 546

12 0.88 0.12 12 0.10628571 1116

14 0.94 0.06 6 0.01342857 141

16 0.95 0.05 5 0.00009524 1

18 0.97 0.03 3 0.00047619 5

20 0.94 0.06 6 0.01009524 106

21 0.92 0.08 8 0.01742857 183

23 0.91 0.09 9 0.01409524 148

24 0.91 0.09 9 0.06952381 730

25 0.91 0.09 9 0.00142857 15

27 0.95 0.05 5 0.00085714 9

29 0.87 0.13 13 0.08104762 851

32 0.90 0.10 10 0.00104762 11

34 0.96 0.04 4 0.00123810 13

36 0.95 0.05 5 0.01171429 123

38 0.96 0.04 4 0.00542857 57

40 0.99 0.01 1 0.00323810 34

41 0.91 0.09 9 0.01028571 108

43 0.81 0.19 19 0.15019048 1577

45 0.98 0.02 2 0.02190476 230

46 0.95 0.05 5 0.01200000 126

47 0.92 0.08 8 0.02171429 228

49 0.94 0.06 6 0.08647619 908

52 0.99 0.01 1 0.00009524 1

54 0.92 0.08 8 0.01152381 121

56 0.87 0.13 13 0.00552381 58

58 0.87 0.13 13 0.05095238 535

60 0.93 0.07 7 0.00114286 12

61 0.78 0.22 22 0.00866667 91

63 0.89 0.11 11 0.06076190 638

65 0.85 0.15 15 0.00400000 42

67 0.86 0.14 14 0.02923810 307

68 0.90 0.10 10 0.01838095 193

69 0.94 0.06 6 0.01190476 125

72 0.95 0.05 5 0.00266667 28

74 0.78 0.22 22 0.14400000 1512

76 0.94 0.06 6 0.01380952 145

78 0.92 0.08 8 0.01104762 116

80 0.91 0.09 9 0.02304762 242

81 0.86 0.14 14 0.01342857 141

83 0.93 0.07 7 0.00438095 46

85 1.00 0.00 0 0.00000000 0

87 0.88 0.12 12 0.02695238 283

89 0.95 0.05 5 0.02800000 294

90 0.87 0.13 13 0.00742857 78

Average 0.9138 0.0862 8.62 0.02766095 290.44

SD 0.051504 0.051504 � 0.03806474 �

Table 6.6: Keystroke Dynamics Results

As there were 50 training group members, there were 50 ROC graphs attainable.

Figures 6.7, 6.8, and 6.9 are presented here to illustrate an example of the best,

average, and worst performances for the keystroke dynamics phase of the experiment.

More examples are provided in Appendix D.
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Figure 6.7: Example Demonstrating Best Classi�cation

Figure 6.8: Example Demonstrating Average Classi�cation
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Figure 6.9: Example Demonstrating Worst Classi�cation

Figure 6.10 presents the far and frr results (coupled together, with the frr

on the left of the far) for the keystroke dynamics phase, for all training group

members. Participant numbers are listed along the x axis, and the performance

measurement or rate on the y axis. Note, the performance measurement ranges

from (0.0) to (0.25). This provides a indication of the accuracy obtained for the

keystroke dynamics experiment.

When reviewing Figure 6.10, it should be remembered that the results achieved

for the frr (for each training group member) were obtained by applying 100 genuine

test samples to their trained ANN. Thus the frr results demonstrate coarse granu-

larity. The far results were obtained by applying 10,500 impostor test samples to

a training group member's trained ANN, resulting in a much �ner granularity.

Figure 6.10 demonstrates that 39 of the 50 training group members achieved a

far less than 0.05, with the remaining 11 greater than or equal to 0.05 (the largest

being approximately 0.15); only 6 members achieved a frr less than 0.05. Figure

6.10 also shows that the frr results were higher than the far results in all cases.
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It seems appropriate to note here, that a �gure (similar to Figure 6.10) is not

presented for any other phase of the experiment. This is because the results achieved

in all other phases did not warrant such a �gure. The frr and far for all other

phases of the experiment were so low that they would not convey any meaningful

information, if presented in a similar �gure.
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6.4.2 Fingerprint Recognition (Phase 2)

Participant Area Under

ROC Curve

True Positive

Mean

Con�dence

Level

Adjustable

Determinant

Value

Decision

Threshold

1 1 0.99996294 0.0500 0.94996294 0.84

2 1 0.99996188 0.0500 0.94996188 0.95

3 1 0.99802990 0.0500 0.94802990 0.61

5 1 0.98105692 0.0500 0.93105692 0.02

7 1 0.99997253 0.0500 0.94997252 0.22

9 1 0.99998120 0.0500 0.94998120 0.20

12 1 0.99997238 0.0500 0.94997238 0.16

14 1 0.99976722 0.0500 0.94976722 0.39

16 1 0.99887867 0.0500 0.94887867 0.09

18 1 0.99969411 0.0500 0.94969411 0.64

20 1 0.99995251 0.0500 0.94995251 0.94

21 1 0.99995280 0.0500 0.94995279 0.20

23 0.99999200 0.99681243 0.0500 0.94681243 0.97

24 1 0.99949265 0.0500 0.94949264 0.81

25 1 0.99968960 0.0500 0.94968960 0.94

27 1 0.99989653 0.0500 0.94989653 0.85

29 1 0.99997006 0.0500 0.94997006 0.04

32 1 0.99993341 0.0500 0.94993341 0.03

34 1 0.99980600 0.0500 0.94980600 0.59

36 1 0.99996920 0.0500 0.94996920 0.67

38 1 0.99799319 0.0500 0.94799319 0.35

40 1 0.99994016 0.0500 0.94994016 0.05

41 1 0.99996204 0.0500 0.94996204 0.05

43 1 0.99993914 0.0500 0.94993914 0.03

45 1 0.99988545 0.0500 0.94988545 0.08

46 1 0.99994543 0.0500 0.94994543 0.90

47 1 0.99988648 0.0500 0.94988648 0.11

49 1 0.99985759 0.0500 0.94985759 0.95

52 1 0.99988577 0.0500 0.94988577 0.94

54 1 0.99997126 0.0500 0.94997126 0.16

56 1 0.99995320 0.0500 0.94995320 0.66

58 1 0.99990624 0.0500 0.94990624 0.93

60 1 0.99997203 0.0500 0.94997203 0.10

61 1 0.99997752 0.0500 0.94997752 0.02

63 1 0.99993195 0.0500 0.94993195 0.93

65 1 0.99995170 0.0500 0.94995170 0.30

67 1 0.99994074 0.0500 0.94994074 0.22

68 1 0.99997243 0.0500 0.94997243 0.87

69 1 0.99995608 0.0500 0.94995608 0.04

72 1 0.99986472 0.0500 0.94986472 0.01

74 0.99999600 0.99571402 0.0500 0.94571402 0.93

76 0.99999900 0.99910068 0.0500 0.94910068 0.98

78 1 0.99997427 0.0500 0.94997427 0.75

80 1 0.98823433 0.0500 0.93823433 0.02

81 1 0.95769181 0.0500 0.90769181 0.41

83 1 0.99989038 0.0500 0.94989038 0.41

85 1 0.99995190 0.0500 0.94995190 0.19

87 1 0.99995996 0.0500 0.94995996 0.93

89 1 0.99995232 0.0500 0.94995232 0.03

90 1 0.99069618 0.0500 0.94069618 0.02

Average 0.99999974 0.99801224 � 0.94801224 0.4506

SD 0.00000123 0.00672410 � 0.00672410 0.37543667

Table 6.7: Fingerprint Recognition Statistics for Threshold Calculation
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Participant True

Positive

Rate

False

Rejection

Rate

Number of

False

Rejections

False

Acceptance

Rate

Number

of False

Acceptances

1 1 0 0 0 0

2 1 0 0 0 0

3 1 0 0 0 0

5 1 0 0 0 0

7 1 0 0 0 0

9 1 0 0 0 0

12 1 0 0 0 0

14 1 0 0 0 0

16 1 0 0 0 0

18 1 0 0 0 0

20 1 0 0 0 0

21 1 0 0 0 0

23 0.95 0.05 5 0 0

24 1 0 0 0 0

25 1 0 0 0 0

27 1 0 0 0 0

29 1 0 0 0 0

32 1 0 0 0 0

34 1 0 0 0 0

36 1 0 0 0 0

38 1 0 0 0 0

40 1 0 0 0 0

41 1 0 0 0 0

43 1 0 0 0 0

45 1 0 0 0 0

46 1 0 0 0 0

47 1 0 0 0 0

49 1 0 0 0 0

52 1 0 0 0 0

54 1 0 0 0 0

56 1 0 0 0 0

58 1 0 0 0 0

60 1 0 0 0 0

61 1 0 0 0 0

63 1 0 0 0 0

65 1 0 0 0 0

67 1 0 0 0 0

68 1 0 0 0 0

69 1 0 0 0 0

72 1 0 0 0 0

74 0.95 0.05 5 0 0

76 0.99 0.01 1 0 0

78 1 0 0 0 0

80 1 0 0 0 0

81 1 0 0 0 0

83 1 0 0 0 0

85 1 0 0 0 0

87 1 0 0 0 0

89 1 0 0 0 0

90 1 0 0 0 0

Average 0.9978 0.0022 0.22 0 0

SD 0.009957 0.009957 � 0 �

Table 6.8: Fingerprint Recognition Results
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6.4.3 Data Fusion (Phase 3)

6.4.3.1 Complementary Data Fusion

Participant Area Under

ROC Curve

True Positive

Mean

Con�dence

Level

Adjustable

Determinant

Value

Decision

Threshold

1 1 0.99993349 0.0500 0.94993349 0.78

2 1 0.99993526 0.0500 0.94993526 0.88

3 1 0.99777526 0.0500 0.94777526 0.28

5 1 0.99968306 0.0500 0.94968306 0.08

7 1 0.99981626 0.0500 0.94981626 0.08

9 1 0.99996180 0.0500 0.94996180 0.25

12 1 0.99992290 0.0500 0.94992290 0.12

14 1 0.99961334 0.0500 0.94961334 0.36

16 1 0.99975571 0.0500 0.94975571 0.10

18 1 0.99979385 0.0500 0.94979385 0.92

20 1 0.99980667 0.0500 0.94980667 0.93

21 1 0.99997503 0.0500 0.94997503 0.53

23 0.99999429 0.99489361 0.0500 0.94489361 0.91

24 1 0.99843420 0.0500 0.94843420 0.11

25 1 0.99962849 0.0500 0.94962849 0.88

27 1 0.99986136 0.0500 0.94986136 0.94

29 1 0.99999791 0.0500 0.94999791 0.29

32 1 0.99987604 0.0500 0.94987604 0.05

34 1 0.99965469 0.0500 0.94965469 0.45

36 1 0.99997427 0.0500 0.94997427 0.95

38 1 0.99908305 0.0500 0.94908304 0.13

40 1 0.99996581 0.0500 0.94996581 0.29

41 1 0.99977032 0.0500 0.94977032 0.12

43 1 0.99995303 0.0500 0.94995303 0.04

45 1 0.99994619 0.0500 0.94994619 0.04

46 1 0.99995954 0.0500 0.94995954 0.69

47 1 0.99984224 0.0500 0.94984224 0.11

49 1 0.99988235 0.0500 0.94988235 0.79

52 1 0.99974277 0.0500 0.94974276 0.94

54 1 0.99996927 0.0500 0.94996927 0.09

56 1 0.99997403 0.0500 0.94997403 0.66

58 1 0.99969609 0.0500 0.94969609 0.92

60 1 0.99996602 0.0500 0.94996602 0.23

61 1 0.99967599 0.0500 0.94967599 0.03

63 1 0.99990192 0.0500 0.94990192 0.77

65 1 0.99990294 0.0500 0.94990294 0.05

67 1 0.99976500 0.0500 0.94976500 0.24

68 1 0.99986011 0.0500 0.94986011 0.89

69 1 0.99990128 0.0500 0.94990128 0.02

72 1 0.99992978 0.0500 0.94992978 0.02

74 1 0.99427257 0.0500 0.94427257 0.85

76 1 0.99594715 0.0500 0.94594715 0.10

78 1 0.99997000 0.0500 0.94997000 0.55

80 1 0.99866941 0.0500 0.94866941 0.06

81 1 0.94646377 0.0500 0.89646377 0.17

83 1 0.99981049 0.0500 0.94981049 0.27

85 1 0.99996275 0.0500 0.94996275 0.11

87 1 0.99978510 0.0500 0.94978510 0.95

89 1 0.99992310 0.0500 0.94992310 0.02

90 1 0.99125975 0.0500 0.94125975 0.02

Average 0.99999989 0.99822090 � 0.94822090 0.4012

SD 0.00000081 0.00765436 � 0.00765436 0.35812801

Table 6.9: Complementary Data Fusion Statistics for Threshold Calculation
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Participant True

Positive

Rate

False

Rejection

Rate

Number of

False

Rejections

False

Acceptance

Rate

Number

of False

Acceptances

1 1 0 0 0 0

2 1 0 0 0 0

3 1 0 0 0 0

5 1 0 0 0 0

7 1 0 0 0 0

9 1 0 0 0 0

12 1 0 0 0 0

14 1 0 0 0 0

16 1 0 0 0 0

18 1 0 0 0 0

20 1 0 0 0 0

21 1 0 0 0 0

23 0.98 0.02 2 0 0

24 1 0 0 0 0

25 1 0 0 0 0

27 1 0 0 0 0

29 1 0 0 0 0

32 1 0 0 0 0

34 1 0 0 0 0

36 1 0 0 0 0

38 1 0 0 0 0

40 1 0 0 0 0

41 1 0 0 0 0

43 1 0 0 0 0

45 1 0 0 0 0

46 1 0 0 0 0

47 1 0 0 0 0

49 1 0 0 0 0

52 1 0 0 0 0

54 1 0 0 0 0

56 1 0 0 0 0

58 1 0 0 0 0

60 1 0 0 0 0

61 1 0 0 0 0

63 1 0 0 0 0

65 1 0 0 0 0

67 1 0 0 0 0

68 1 0 0 0 0

69 1 0 0 0 0

72 1 0 0 0 0

74 1 0 0 0 0

76 1 0 0 0 0

78 1 0 0 0 0

80 1 0 0 0 0

81 1 0 0 0 0

83 1 0 0 0 0

85 1 0 0 0 0

87 1 0 0 0 0

89 1 0 0 0 0

90 1 0 0 0 0

Average 0.9996 0.0004 0.04 0 0

SD 0.002828 0.002828 � 0 �

Table 6.10: Complementary Data Fusion Results
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6.4.3.2 Cooperative Data Fusion

Stage 1 (40%)

Participant Area Under

ROC Curve

True Positive

Mean

Con�dence

Level

Adjustable

Determinant

Value

Decision

Threshold

1 1 0.99991754 0.0500 0.94991754 0.78

2 1 0.99988399 0.0500 0.94988399 0.94

3 1 0.99436450 0.0500 0.94436450 0.04

5 1 0.99858813 0.0500 0.94858813 0.08

7 1 0.99995643 0.0500 0.94995643 0.27

9 1 0.99999629 0.0500 0.94999629 0.20

12 1 0.99997473 0.0500 0.94997473 0.18

14 1 0.99998118 0.0500 0.94998118 0.94

16 1 0.99956927 0.0500 0.94956927 0.03

18 1 0.99987230 0.0500 0.94987230 0.93

20 1 0.99997892 0.0500 0.94997892 0.43

21 1 0.99997063 0.0500 0.94997063 0.65

23 0.99998095 0.98141660 0.0500 0.93141659 0.77

24 1 0.99906967 0.0500 0.94906967 0.40

25 0.99995238 0.99994703 0.0500 0.94994703 0.80

27 1 0.99996674 0.0500 0.94996674 0.72

29 1 0.99999984 0.0500 0.94999984 0.48

32 1 0.99990204 0.0500 0.94990204 0.07

34 1 0.99987635 0.0500 0.94987635 0.42

36 1 0.99997806 0.0500 0.94997806 0.51

38 1 0.99997937 0.0500 0.94997937 0.90

40 1 0.99996609 0.0500 0.94996609 0.11

41 1 0.99990079 0.0500 0.94990079 0.03

43 1 0.99994124 0.0500 0.94994124 0.05

45 1 0.99991208 0.0500 0.94991207 0.29

46 1 0.99998315 0.0500 0.94998315 0.98

47 1 0.99996134 0.0500 0.94996134 0.50

49 1 0.99992628 0.0500 0.94992628 0.87

52 1 0.99993853 0.0500 0.94993853 0.92

54 1 0.99996554 0.0500 0.94996554 0.04

56 1 0.99995322 0.0500 0.94995322 0.57

58 1 0.99993582 0.0500 0.94993582 0.94

60 1 0.99997868 0.0500 0.94997868 0.31

61 1 0.99996597 0.0500 0.94996597 0.02

63 1 0.99994824 0.0500 0.94994824 0.86

65 1 0.99996813 0.0500 0.94996813 0.07

67 1 0.99995870 0.0500 0.94995870 0.11

68 1 0.99996510 0.0500 0.94996510 0.95

69 1 0.99996257 0.0500 0.94996257 0.01

72 1 0.99997178 0.0500 0.94997178 0.02

74 1 0.99398993 0.0500 0.94398993 0.74

76 1 0.99813954 0.0500 0.94813954 0.18

78 1 0.99997119 0.0500 0.94997119 0.61

80 1 0.97866954 0.0500 0.92866954 0.29

81 1 0.95296646 0.0500 0.90296646 0.21

83 1 0.99994713 0.0500 0.94994713 0.25

85 1 0.99992489 0.0500 0.94992489 0.03

87 0.99995238 0.99996281 0.0500 0.94996281 0.49

89 1 0.99997073 0.0500 0.94997073 0.04

90 1 0.99238965 0.0500 0.94238965 0.14

Average 0.99999867 0.99774449 � 0.94774449 0.4234

SD 0.00000973 0.00768056 � 0.00768056 0.34155473

Table 6.11: Cooperative Data Fusion (40%) Statistics for Threshold Calculation
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Participant True

Positive

Rate

False

Rejection

Rate

Number of

False

Rejections

False

Acceptance

Rate

Number

of False

Acceptances

1 1 0 0 0 0

2 1 0 0 0 0

3 1 0 0 0 0

5 1 0 0 0 0

7 1 0 0 0 0

9 1 0 0 0 0

12 1 0 0 0 0

14 1 0 0 0 0

16 1 0 0 0 0

18 1 0 0 0 0

20 1 0 0 0 0

21 1 0 0 0 0

23 0.98 0.02 2 0 0

24 1 0 0 0 0

25 1 0 0 0.00009524 1

27 1 0 0 0 0

29 1 0 0 0 0

32 1 0 0 0 0

34 1 0 0 0 0

36 1 0 0 0 0

38 1 0 0 0 0

40 1 0 0 0 0

41 1 0 0 0 0

43 1 0 0 0 0

45 1 0 0 0 0

46 1 0 0 0 0

47 1 0 0 0 0

49 1 0 0 0 0

52 1 0 0 0 0

54 1 0 0 0 0

56 1 0 0 0 0

58 1 0 0 0 0

60 1 0 0 0 0

61 1 0 0 0 0

63 1 0 0 0 0

65 1 0 0 0 0

67 1 0 0 0 0

68 1 0 0 0 0

69 1 0 0 0 0

72 1 0 0 0 0

74 1 0 0 0 0

76 1 0 0 0 0

78 1 0 0 0 0

80 1 0 0 0 0

81 1 0 0 0 0

83 1 0 0 0 0

85 1 0 0 0 0

87 1 0 0 0.00009524 1

89 1 0 0 0 0

90 1 0 0 0 0

Average 0.9996 0.0004 0.04 0.00000381 0.04

SD 0.002828 0.002828 � 0.00001885 �

Table 6.12: Cooperative Data Fusion (40%) Results
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Stage 2 (50%)

Participant Area Under

ROC Curve

True Positive

Mean

Con�dence

Level

Adjustable

Determinant

Value

Decision

Threshold

1 1 0.99995281 0.0500 0.94995281 0.82

2 1 0.99993966 0.0500 0.94993966 0.88

3 1 0.99786012 0.0500 0.94786012 0.70

5 1 0.99999326 0.0500 0.94999326 0.67

7 1 0.99988564 0.0500 0.94988564 0.15

9 1 0.99997344 0.0500 0.94997344 0.09

12 1 0.99999695 0.0500 0.94999695 0.28

14 1 0.99998740 0.0500 0.94998740 0.96

16 1 0.99978117 0.0500 0.94978117 0.11

18 1 0.99990018 0.0500 0.94990018 0.95

20 1 0.99991915 0.0500 0.94991915 0.95

21 1 0.99998011 0.0500 0.94998011 0.24

23 1 0.99796202 0.0500 0.94796202 0.93

24 1 0.99897221 0.0500 0.94897221 0.02

25 1 0.99994968 0.0500 0.94994968 0.98

27 1 0.99993967 0.0500 0.94993967 0.68

29 1 0.99997148 0.0500 0.94997148 0.03

32 1 0.99991157 0.0500 0.94991157 0.06

34 1 0.99991700 0.0500 0.94991700 0.64

36 1 0.99997909 0.0500 0.94997909 0.47

38 1 0.99986791 0.0500 0.94986791 0.87

40 1 0.99998716 0.0500 0.94998716 0.08

41 1 0.99993588 0.0500 0.94993588 0.02

43 1 0.99995880 0.0500 0.94995880 0.06

45 1 0.99993733 0.0500 0.94993733 0.19

46 1 0.99997161 0.0500 0.94997161 0.93

47 1 0.99989028 0.0500 0.94989028 0.12

49 1 0.99994911 0.0500 0.94994911 0.88

52 1 0.99993010 0.0500 0.94993010 0.93

54 1 0.99997683 0.0500 0.94997683 0.04

56 1 0.99995208 0.0500 0.94995208 0.79

58 1 0.99990854 0.0500 0.94990854 0.85

60 1 0.99997807 0.0500 0.94997807 0.15

61 1 0.99996351 0.0500 0.94996351 0.03

63 1 0.9999384 0.0500 0.9499384 0.66

65 1 0.99997876 0.0500 0.94997876 0.14

67 1 0.99993852 0.0500 0.94993852 0.09

68 1 0.99996217 0.0500 0.94996216 0.95

69 1 0.99994770 0.0500 0.94994770 0.03

72 1 0.99996497 0.0500 0.94996497 0.02

74 1 0.99671857 0.0500 0.94671857 0.82

76 1 0.99903137 0.0500 0.94903136 0.26

78 1 0.99999157 0.0500 0.94999157 0.20

80 1 0.99675004 0.0500 0.94675004 0.05

81 0.99999714 0.99820160 0.0500 0.94820160 0.98

83 1 0.99995360 0.0500 0.94995360 0.14

85 1 0.99996115 0.0500 0.94996115 0.12

87 1 0.99998683 0.0500 0.94998683 0.92

89 1 0.99996138 0.0500 0.94996138 0.04

90 1 0.99462889 0.0500 0.94462889 0.13

Average 0.99999994 0.99955791 � 0.94955791 0.442

SD 0.00000040 0.00105515 � 0.00105515 0.38194988

Table 6.13: Cooperative Data Fusion (50%) Statistics for Threshold Calculation
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Participant True

Positive

Rate

False

Rejection

Rate

Number of

False

Rejections

False

Acceptance

Rate

Number

of False

Acceptances

1 1 0 0 0 0

2 1 0 0 0 0

3 1 0 0 0 0

5 1 0 0 0 0

7 1 0 0 0 0

9 1 0 0 0 0

12 1 0 0 0 0

14 1 0 0 0 0

16 1 0 0 0 0

18 1 0 0 0 0

20 1 0 0 0 0

21 1 0 0 0 0

23 1 0 0 0 0

24 1 0 0 0 0

25 1 0 0 0 0

27 1 0 0 0 0

29 1 0 0 0 0

32 1 0 0 0 0

34 1 0 0 0 0

36 1 0 0 0 0

38 1 0 0 0 0

40 1 0 0 0 0

41 1 0 0 0 0

43 1 0 0 0 0

45 1 0 0 0 0

46 1 0 0 0 0

47 1 0 0 0 0

49 1 0 0 0 0

52 1 0 0 0 0

54 1 0 0 0 0

56 1 0 0 0 0

58 1 0 0 0 0

60 1 0 0 0 0

61 1 0 0 0 0

63 1 0 0 0 0

65 1 0 0 0 0

67 1 0 0 0 0

68 1 0 0 0 0

69 1 0 0 0 0

72 1 0 0 0 0

74 1 0 0 0 0

76 1 0 0 0 0

78 1 0 0 0 0

80 1 0 0 0 0

81 0.97 0.03 3 0 0

83 1 0 0 0 0

85 1 0 0 0 0

87 1 0 0 0 0

89 1 0 0 0 0

90 1 0 0 0 0

Average 0.9994 0.0006 0.06 0 0

SD 0.004243 0.004243 � 0 �

Table 6.14: Cooperative Data Fusion (50%) Results
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Stage 3 (60%)

Participant Area Under

ROC Curve

True Positive

Mean

Con�dence

Level

Adjustable

Determinant

Value

Decision

Threshold

1 1 0.99992793 0.0500 0.94992793 0.85

2 1 0.99996556 0.0500 0.94996556 0.89

3 1 0.99843240 0.0500 0.94843240 0.38

5 1 0.98928223 0.0500 0.93928223 0.03

7 1 0.99998868 0.0500 0.94998868 0.16

9 1 0.99996960 0.0500 0.94996960 0.10

12 1 0.99998107 0.0500 0.94998107 0.18

14 1 0.99982194 0.0500 0.94982194 0.69

16 1 0.99985554 0.0500 0.94985554 0.58

18 1 0.99995425 0.0500 0.94995425 0.93

20 1 0.99992648 0.0500 0.94992648 0.94

21 1 0.99993923 0.0500 0.94993923 0.20

23 0.99998571 0.99222820 0.0500 0.94222819 0.95

24 1 0.99828443 0.0500 0.94828443 0.25

25 1 0.99990365 0.0500 0.94990365 0.92

27 1 0.99993836 0.0500 0.94993836 0.81

29 1 0.99996302 0.0500 0.94996302 0.03

32 1 0.99990327 0.0500 0.94990327 0.03

34 1 0.99985921 0.0500 0.94985921 0.73

36 1 0.99995089 0.0500 0.94995089 0.64

38 1 0.99764964 0.0500 0.94764963 0.13

40 1 0.99994105 0.0500 0.94994104 0.20

41 1 0.99992359 0.0500 0.94992359 0.03

43 1 0.99995974 0.0500 0.94995974 0.05

45 1 0.99993968 0.0500 0.94993968 0.04

46 1 0.99997368 0.0500 0.94997368 0.90

47 1 0.99993063 0.0500 0.94993063 0.15

49 1 0.99995690 0.0500 0.94995690 0.90

52 1 0.99995330 0.0500 0.94995330 0.92

54 1 0.99995585 0.0500 0.94995585 0.07

56 1 0.99995054 0.0500 0.94995054 0.80

58 1 0.99994746 0.0500 0.94994746 0.95

60 1 0.99998110 0.0500 0.94998110 0.15

61 1 0.99994356 0.0500 0.94994356 0.02

63 1 0.99995022 0.0500 0.94995022 0.90

65 1 0.99995826 0.0500 0.94995826 0.12

67 1 0.99997349 0.0500 0.94997349 0.22

68 1 0.99994444 0.0500 0.94994444 0.95

69 1 0.99998234 0.0500 0.94998234 0.01

72 1 0.99996257 0.0500 0.94996257 0.02

74 1 0.99440462 0.0500 0.94440462 0.57

76 1 0.99914280 0.0500 0.94914280 0.64

78 1 0.99997657 0.0500 0.94997657 0.73

80 1 0.99899996 0.0500 0.94899996 0.03

81 1 0.98798671 0.0500 0.93798671 0.77

83 1 0.99985162 0.0500 0.94985162 0.59

85 1 0.99998320 0.0500 0.94998320 0.25

87 1 0.99995217 0.0500 0.94995217 0.80

89 1 0.99995057 0.0500 0.94995057 0.04

90 1 0.9947447 0.0500 0.94474474 0.09

Average 0.99999971 0.99897694 � 0.94897694 0.4466

SD 0.00000202 0.00263041 � 0.00263041 0.36663172

Table 6.15: Cooperative Data Fusion (60%) Statistics for Threshold Calculation



360 CHAPTER 6. RESEARCH RESULTS AND ANALYSIS METHOD

Participant True

Positive

Rate

False

Rejection

Rate

Number of

False

Rejections

False

Acceptance

Rate

Number

of False

Acceptances

1 1 0 0 0 0

2 1 0 0 0 0

3 1 0 0 0 0

5 1 0 0 0 0

7 1 0 0 0 0

9 1 0 0 0 0

12 1 0 0 0 0

14 1 0 0 0 0

16 1 0 0 0 0

18 1 0 0 0 0

20 1 0 0 0 0

21 1 0 0 0 0

23 0.95 0.05 5 0 0

24 1 0 0 0 0

25 1 0 0 0 0

27 1 0 0 0 0

29 1 0 0 0 0

32 1 0 0 0 0

34 1 0 0 0 0

36 1 0 0 0 0

38 1 0 0 0 0

40 1 0 0 0 0

41 1 0 0 0 0

43 1 0 0 0 0

45 1 0 0 0 0

46 1 0 0 0 0

47 1 0 0 0 0

49 1 0 0 0 0

52 1 0 0 0 0

54 1 0 0 0 0

56 1 0 0 0 0

58 1 0 0 0 0

60 1 0 0 0 0

61 1 0 0 0 0

63 1 0 0 0 0

65 1 0 0 0 0

67 1 0 0 0 0

68 1 0 0 0 0

69 1 0 0 0 0

72 1 0 0 0 0

74 1 0 0 0 0

76 1 0 0 0 0

78 1 0 0 0 0

80 1 0 0 0 0

81 1 0 0 0 0

83 1 0 0 0 0

85 1 0 0 0 0

87 1 0 0 0 0

89 1 0 0 0 0

90 1 0 0 0 0

Average 0.9990 0.0010 0.1 0 0

SD 0.007071 0.007071 � 0 �

Table 6.16: Cooperative Data Fusion (60%) Results
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Stage 4 (70%)

Participant Area Under

ROC Curve

True Positive

Mean

Con�dence

Level

Adjustable

Determinant

Value

Decision

Threshold

1 1 0.99991163 0.0500 0.94991163 0.67

2 1 0.99995292 0.0500 0.94995292 0.93

3 1 0.99709036 0.0500 0.94709036 0.41

5 1 0.98615842 0.0500 0.93615841 0.10

7 1 0.99997614 0.0500 0.94997614 0.44

9 1 0.99997112 0.0500 0.94997112 0.25

12 1 0.99995742 0.0500 0.94995742 0.24

14 1 0.99979208 0.0500 0.94979208 0.51

16 1 0.99988488 0.0500 0.94988488 0.35

18 1 0.99996285 0.0500 0.94996285 0.94

20 1 0.99995091 0.0500 0.94995091 0.95

21 1 0.99996662 0.0500 0.94996662 0.47

23 0.99998238 0.99344748 0.0500 0.94344748 0.95

24 1 0.99873973 0.0500 0.94873973 0.71

25 1 0.99987783 0.0500 0.94987783 0.95

27 1 0.99989272 0.0500 0.94989272 0.76

29 1 0.99997935 0.0500 0.94997935 0.03

32 1 0.99995041 0.0500 0.94995041 0.03

34 1 0.99988808 0.0500 0.94988808 0.68

36 1 0.99998034 0.0500 0.94998034 0.70

38 1 0.99767674 0.0500 0.94767674 0.14

40 1 0.99997277 0.0500 0.94997277 0.25

41 1 0.99994357 0.0500 0.94994357 0.19

43 1 0.99992265 0.0500 0.94992265 0.02

45 1 0.99992186 0.0500 0.94992186 0.03

46 1 0.99994753 0.0500 0.94994753 0.84

47 1 0.99987963 0.0500 0.94987963 0.14

49 1 0.99989966 0.0500 0.94989966 0.95

52 1 0.99990184 0.0500 0.94990184 0.99

54 1 0.99998099 0.0500 0.94998099 0.15

56 1 0.99989832 0.0500 0.94989831 0.52

58 1 0.99987557 0.0500 0.94987557 0.95

60 1 0.99997128 0.0500 0.94997128 0.17

61 1 0.99981937 0.0500 0.94981937 0.02

63 1 0.99997335 0.0500 0.94997335 0.91

65 1 0.99994637 0.0500 0.94994637 0.09

67 1 0.99993493 0.0500 0.94993493 0.20

68 1 0.99996165 0.0500 0.94996165 0.90

69 1 0.99992784 0.0500 0.94992784 0.04

72 1 0.99993243 0.0500 0.94993243 0.03

74 1 0.99493857 0.0500 0.94493857 0.82

76 1 0.99817754 0.0500 0.94817754 0.17

78 1 0.99995635 0.0500 0.94995635 0.64

80 1 0.99315162 0.0500 0.94315162 0.14

81 1 0.95857320 0.0500 0.90857320 0.47

83 1 0.99985074 0.0500 0.94985074 0.50

85 1 0.99995945 0.0500 0.94995945 0.01

87 1 0.99992721 0.0500 0.94992721 0.92

89 1 0.99996624 0.0500 0.94996624 0.03

90 1 0.99305809 0.0500 0.94305809 0.03

Average 0.99999965 0.99816357 � 0.94816357 0.4466

SD 0.00000249 0.00626269 � 0.00626269 0.35438714

Table 6.17: Cooperative Data Fusion (70%) Statistics for Threshold Calculation
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Participant True

Positive

Rate

False

Rejection

Rate

Number of

False

Rejections

False

Positive

Rate

Number

of False

Acceptances

1 1 0 0 0 0

2 1 0 0 0 0

3 1 0 0 0 0

5 1 0 0 0 0

7 1 0 0 0 0

9 1 0 0 0 0

12 1 0 0 0 0

14 1 0 0 0 0

16 1 0 0 0 0

18 1 0 0 0 0

20 1 0 0 0 0

21 1 0 0 0 0

23 0.95 0.05 5 0 0

24 1 0 0 0 0

25 1 0 0 0 0

27 1 0 0 0 0

29 1 0 0 0 0

32 1 0 0 0 0

34 1 0 0 0 0

36 1 0 0 0 0

38 1 0 0 0 0

40 1 0 0 0 0

41 1 0 0 0 0

43 1 0 0 0 0

45 1 0 0 0 0

46 1 0 0 0 0

47 1 0 0 0 0

49 1 0 0 0 0

52 1 0 0 0 0

54 1 0 0 0 0

56 1 0 0 0 0

58 1 0 0 0 0

60 1 0 0 0 0

61 1 0 0 0 0

63 1 0 0 0 0

65 1 0 0 0 0

67 1 0 0 0 0

68 1 0 0 0 0

69 1 0 0 0 0

72 1 0 0 0 0

74 1 0 0 0 0

76 1 0 0 0 0

78 1 0 0 0 0

80 1 0 0 0 0

81 1 0 0 0 0

83 1 0 0 0 0

85 1 0 0 0 0

87 1 0 0 0 0

89 1 0 0 0 0

90 1 0 0 0 0

Average 0.9990 0.0010 0.1 0 0

SD 0.007071 0.007071 � 0 �

Table 6.18: Cooperative Data Fusion (70%) Results
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6.5 Conclusion

In this chapter, a discussion of the classi�cation outcomes for authentication pur-

poses has been presented in section 6.2; the measurements retrievable from these

outcomes are discussed in section 6.2.1.

As Receiver Operating Characteristics graphs were utilised in this study to assist

classi�cation, a description of their operations and properties were outlined in section

6.2.2, along with the reasons for their use.

The implementation of ROC analysis in this study was outlined in section 6.3.

This included a description of how the decision threshold was determined. This

threshold was the basis for determination of performance metrics used to present

results (for each training group member, for each phase of the experiment).

Finally, the experimental results were presented in table form in section 6.4. The

following sections presented the tabled results for all phases of the experiment:

1. Keystoke Dynamics�section 6.4.1.

2. Fingerprint Recognition�section 6.4.2.

3. Feature Level Data Fusion:

• Complimentary Data Fusion�section 6.4.3.1.

• Cooperative Data Fusion�section 6.4.3.2:

(a) Stage 1 (40%).

(b) Stage 2 (50%).

(c) Stage 3 (60%).

(d) Stage 4 (70%).

Given the summary statistics presented in Tables 6.6, 6.8, 6.10, 6.12, 6.14,

6.16, 6.18, Table 6.19 presents the overall performance�as averages and standard

deviations�achieved in each phase of the experiment for the frr and far metrics.
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The results presented in this chapter re�ect the performance of classi�ers at the

nominated decision thresholds only. The study makes no claim that these results

would be re�ected at any other decision threshold or cut-o� value. However, the

method for determining the decision threshold was scienti�cally sound, and therefore

the results should be repeatable.

The next chapter discusses the results in detail and compares the �ndings with

other research in the respective �elds.
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Chapter 7

Discussion Of Results

7.1 Introduction

This chapter presents a discussion of the results achieved in the current experiment,

that were presented in Chapter 6, and also compares the results with other research

e�orts in the respective �elds. Results for the keystroke dynamics phase of the

experiment are discussed in section 7.2.1, and results for the �ngerprint recognition

phase of the experiment are discussed in section 7.2.2.

Section 7.2.3 provides a discussion of results for the feature level data fusion phase

of the experiment, including both the complementary paradigm (section 7.2.3.1)

and the cooperative paradigm (section 7.2.3.3). In section 7.2.3.3, a discussion

is provided for results in relation to the four experimental stages conducted for the

cooperative data fusion paradigm; that is, the four stages where di�erent proportions

of available data were used for data fusion1.

Finally, section 7.3 provides a conclusion to the chapter.the results

7.2 Discussion

This section presents a detailed discussion of the results for the three phases of the

experiment. Statistics pertaining to the determination of the decision thresholds,

and the corresponding experimental �ndings, for all training group members were

presented via the tables in Chapter 6 section 6.4.

1Described in Chapter 5 section 5.6.3.

367
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For convenience, these tables have been duplicated and re-numbered in this chap-

ter. Table 7.1 illustrates the correspondence between the tables as they were num-

bered in Chapter 6 and as they are numbered for this Chapter. Thus the following

discussion will henceforth make reference to the �gures in the tables as they are

numbered for this chapter, according to Table 7.1.

Table number in Chapter 6 Table number in this Chapter

Table 6.5 Table 7.2
Table 6.6 Table 7.3
Table 6.7 Table 7.7
Table 6.8 Table 7.8
Table 6.9 Table 7.10
Table 6.10 Table 7.11
Table 6.11 Table 7.13
Table 6.12 Table 7.14
Table 6.13 Table 7.15
Table 6.14 Table 7.16
Table 6.15 Table 7.17
Table 6.16 Table 7.18
Table 6.17 Table 7.19
Table 6.18 Table 7.20

Table 7.1: Corresponding Table Numbers

For all phases of the experiment, the decision threshold was determined as that

operating point, on each training group member's ROC curve, which returned the

best results in terms of the performance variables; the false acceptance rate (FAR)

and the false rejection rate (FRR)2.

After discussing the results for each phase of the experiment (by referring to the

tables listed in Table 7.1), a comparison will be made between the results achieved

in the current experiment and the results presented in the publications reviewed

for keystroke dynamics (Chapter 3 section 3.4.1), �ngerprint recognition (Chapter

4 section 4.5), and multi-modal biometrics (Chapter 2 section 2.3.2.2).

Whilst making these comparisons, attention will be drawn to similarities and

di�erences between the current study and those reviewed. This is done to highlight

what is di�erent about the methodology used in the current study (in relation to

those papers reviewed), and to demonstrate that the results achieved�utilising the

stated methodology�were comparable to those achieved in other research e�orts in

their respective �elds.

2Refer to the discussion in Chapter 6 section 6.2.1.
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7.2.1 Discussion Of Keystroke Dynamics Results

The statistics in Table 7.2 provide information regarding the calculation of the deci-

sion threshold, for each of the 50 training group members, for the keystroke dynamics

phase of the experiment3.

Figures in column 2 of Table 7.2 (the Area Under the ROC Curve) show that

member 85 achieved an area of 14. With a FAR of 0.0 and FRR of 0.0, mem-

ber 85 indeed achieved the best possible results (as demonstrated in Table 7.3).

Training group members 16, 18, and 52 also achieved some of the best AUC values

(0.99442571, 0.99973810, and 0.99994952 respectively), which resulted in very good

results for both performance variables.

It can also be seen that training group members 43, 74, 3, and 12 had the four

lowest AUC values (0.83263333, 0.86826095, 0.88062905, and 0.91994667 respec-

tively). This meant that the con�dence levels (Table 7.2 column 4) for those four

members were higher than 0.055 (0.075, 0.075, 0.075, and 0.0625 respectively). Fig-

ures in Table 7.3 demonstrate that these training group members indeed achieved

the worst results for both performance variables.

Training group members 29, 49, and 61 also had higher con�dence levels (0.0625

each), resulting from lower AUC values of 0.94121762, 0.94541667, and 0.94248857

respectively. For member 29 the lower AUC and higher con�dence level resulted in

high error rates for both performance variables (a FAR of 0.08104762 and a FRR

of 0.13). For members 49 and 61, they resulted in a high rate for one performance

variable and a low rate for the other. That is, member 49 scored a FAR of 0.08647619

and a FRR of 0.06, and member 61 scored a FAR of 0.00866667 and a FRR of 0.22.

Note that the decision thresholds for keystroke dynamics were generally above

0.9; although 7 were less than 0.9, they were quite close. In fact, the average for the

decision thresholds was 0.9486 with a standard deviation of 0.03811958. This was

most likely a result of the high variability associated with keystroke dynamics data.

3The processes for calculating the area under the ROC curve (AUC) and the decision threshold
were described in Chapter 6 sections 6.3.3 and 6.3.4 respectively.

4An AUC value of 1 demonstrates perfect recognition at the nominated decision threshold.
5As explained in Chapter 6 section 6.3.4, a higher value for the con�dence level decreased the

adjustable determinant (AD) value, and actually indicated lower con�dence in the performance of
the classi�er (typically producing poorer results).
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As will be seen in the following sections, the decision thresholds for the keystroke

dynamics phase of the experiment were typically much higher than those in the

remaining phases of the experiment.

Participant Area Under

ROC Curve

True Positive

Mean

Con�dence

Level

Adjustable

Determinant

Value

Decision

Threshold

1 0.99135190 0.98927652 0.0500 0.93927652 0.96

2 0.95659857 0.95334717 0.0500 0.90334717 0.97

3 0.88062905 0.85889453 0.0750 0.78389453 0.86

5 0.99785381 0.99474991 0.0500 0.94474991 0.98

7 0.99322429 0.98808178 0.0500 0.93808178 0.99

9 0.96157905 0.96274334 0.0500 0.91274334 0.95

12 0.91994667 0.93981623 0.0625 0.87731623 0.97

14 0.99516429 0.98649916 0.0500 0.93649916 0.93

16 0.99442571 0.97118196 0.0500 0.92118195 0.95

18 0.99973810 0.99862410 0.0500 0.94862410 0.99

20 0.99369381 0.97664731 0.0500 0.92664731 0.98

21 0.98268905 0.96702640 0.0500 0.91702640 0.97

23 0.97532000 0.95544168 0.0500 0.90544168 0.96

24 0.95277429 0.95765571 0.0500 0.90765571 0.94

25 0.99058143 0.95367530 0.0500 0.90367530 0.96

27 0.99949143 0.99109513 0.0500 0.94109513 0.96

29 0.94121762 0.93243909 0.0625 0.86993909 0.92

32 0.97951571 0.94305124 0.0500 0.89305124 0.98

34 0.99918000 0.98004077 0.0500 0.93004077 0.95

36 0.99211571 0.98287234 0.0500 0.93287234 0.96

38 0.99692810 0.99031712 0.0500 0.94031712 0.99

40 0.99834524 0.99927547 0.0500 0.94927547 0.99

41 0.98708762 0.95652380 0.0500 0.90652380 0.97

43 0.86263333 0.86382857 0.0750 0.78882857 0.99

45 0.98877381 0.99863071 0.0500 0.94863071 0.99

46 0.99621143 0.99234570 0.0500 0.94234570 0.96

47 0.98223762 0.95406353 0.0500 0.90406353 0.89

49 0.94541667 0.97502202 0.0625 0.91252202 0.94

52 0.99994952 0.99833596 0.0500 0.94833596 0.98

54 0.98558571 0.96455751 0.0500 0.91455750 0.94

56 0.97548333 0.91711252 0.0500 0.86711252 0.92

58 0.95181810 0.91879129 0.0500 0.86879129 0.93

60 0.99755619 0.97835570 0.0500 0.92835570 0.97

61 0.94248857 0.84054680 0.0625 0.77804680 0.95

63 0.95563619 0.93299954 0.0500 0.88299954 0.89

65 0.97971571 0.89510313 0.0500 0.84510313 0.88

67 0.96299048 0.90508670 0.0500 0.85508670 0.88

68 0.97225952 0.94748348 0.0500 0.89748348 0.98

69 0.99225190 0.97082952 0.0500 0.92082952 0.95

72 0.99848952 0.99350247 0.0500 0.94350247 0.98

74 0.86826095 0.84537021 0.0750 0.77037021 0.82

76 0.98762333 0.97372189 0.0500 0.92372189 0.94

78 0.97809667 0.94457460 0.0500 0.89457460 0.95

80 0.97258619 0.95375459 0.0500 0.90375459 0.97

81 0.95439667 0.89733494 0.0500 0.84733494 0.98

83 0.98380381 0.96253737 0.0500 0.91253737 0.97

85 1.00000000 0.99663067 0.0500 0.94663067 0.88

87 0.95541905 0.92590986 0.0500 0.87590986 0.94

89 0.98358381 0.98422130 0.0500 0.93422130 0.97

90 0.97026905 0.91696189 0.0500 0.86696189 0.91

Average 0.97245977 0.95353777 � 0.90103777 0.9486

SD 0.03232844 0.04117834 � 0.04586111 0.03811958

Table 7.2: Duplication of Keystroke Dynamics Statistics for Threshold Calculation
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Participant True

Positive

Rate

False

Rejection

Rate

Number

of False

Rejections

False

Acceptance

Rate

Number

of False

Acceptances

1 0.94 0.06 6 0.01561905 164

2 0.91 0.09 9 0.06533333 686

3 0.79 0.21 21 0.12600000 1323

5 0.95 0.05 5 0.00466667 49

7 0.96 0.04 4 0.00247619 26

9 0.93 0.07 7 0.05200000 546

12 0.88 0.12 12 0.10628571 1116

14 0.94 0.06 6 0.01342857 141

16 0.95 0.05 5 0.00009524 1

18 0.97 0.03 3 0.00047619 5

20 0.94 0.06 6 0.01009524 106

21 0.92 0.08 8 0.01742857 183

23 0.91 0.09 9 0.01409524 148

24 0.91 0.09 9 0.06952381 730

25 0.91 0.09 9 0.00142857 15

27 0.95 0.05 5 0.00085714 9

29 0.87 0.13 13 0.08104762 851

32 0.90 0.10 10 0.00104762 11

34 0.96 0.04 4 0.00123810 13

36 0.95 0.05 5 0.01171429 123

38 0.96 0.04 4 0.00542857 57

40 0.99 0.01 1 0.00323810 34

41 0.91 0.09 9 0.01028571 108

43 0.81 0.19 19 0.15019048 1577

45 0.98 0.02 2 0.02190476 230

46 0.95 0.05 5 0.01200000 126

47 0.92 0.08 8 0.02171429 228

49 0.94 0.06 6 0.08647619 908

52 0.99 0.01 1 0.00009524 1

54 0.92 0.08 8 0.01152381 121

56 0.87 0.13 13 0.00552381 58

58 0.87 0.13 13 0.05095238 535

60 0.93 0.07 7 0.00114286 12

61 0.78 0.22 22 0.00866667 91

63 0.89 0.11 11 0.06076190 638

65 0.85 0.15 15 0.00400000 42

67 0.86 0.14 14 0.02923810 307

68 0.90 0.10 10 0.01838095 193

69 0.94 0.06 6 0.01190476 125

72 0.95 0.05 5 0.00266667 28

74 0.78 0.22 22 0.14400000 1512

76 0.94 0.06 6 0.01380952 145

78 0.92 0.08 8 0.01104762 116

80 0.91 0.09 9 0.02304762 242

81 0.86 0.14 14 0.01342857 141

83 0.93 0.07 7 0.00438095 46

85 1.00 0.00 0 0.00000000 0

87 0.88 0.12 12 0.02695238 283

89 0.95 0.05 5 0.02800000 294

90 0.87 0.13 13 0.00742857 78

Average 0.9138 0.0862 8.62 0.02766095 290.44

SD 0.051504 0.051504 � 0.03806474 �

Table 7.3: Duplication of Keystroke Dynamics Results

The individual training group members' results, demonstrated in Table 7.3, indi-

cate that the lowest FAR (column 5) was 0.0 attained by member 85, whilst members

16 and 52 attained a FAR of 0.00009524. This meant that no impostor samples were

incorrectly accepted as belonging to member 85, and that only 1 impostor sample

each was incorrectly accepted as belonging to members 16 and 526. Other low false

6Recall: member 85 had an AUC of 1, and members 16 and 52 had an AUC very close to 1.
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acceptance rates were 0.00047619 (5 false acceptances out of 10,500) and 0.00085714

(9 false acceptances out of 10,500), attained by members 18 and 27 respectively. The

above rates would typically be considered very good rates for the FAR performance

variable.

False acceptance rates of 0.15019048, 0.144, 0.126, and 0.10628571 (attained by

training group members 43, 74, 3, and 12 respectively) were the highest of all those

attained by any training group member. This meant that 1,577, 1,512, 1,323, and

1,116 impostor samples (out of 10,500) were incorrectly accepted as belonging to

members 43, 74, 3, and 12 respectively. Other high false acceptance rates were

0.08647619 (908 false acceptances out of 10,500) and 0.08104762 (851 false accep-

tances out of 10,500), attained by training group members 49 and 29 respectively.

The above rates would de�nitely be considered unacceptably high rates for the FAR

performance variable.

In general, if an acceptable upper limit for the FAR was set to 0.001, it would

mean that no more than 1 impostor sample in 1,000 could be incorrectly accepted.

In the current experiment, that would equate to approximately 10 impostor samples

or less (out of 10,500), which could be incorrectly accepted for each of the training

group members.

According to Table 7.3 only 5 members achieved a FAR less than or equal to

0.001. However in keystroke dynamics research, a FAR of 0.001 is not typically

achieved often (refer Table 3.2 in Chapter 3 section 3.4.1). If the upper limit was

to be relaxed to 0.0025 for example, then 10 members achieved a FAR less than or

equal to this value (that is, 26 impostor samples or less were falsely accepted).

The lowest FRR of 0.0 (refer Table 7.3 column 3) was attained by training

group member 85, whilst members 40 and 52 shared a rate of 0.01. This meant

that for member 85 no genuine samples (out of 100) were incorrectly rejected, and

for members 40 and 52 only 1 each of their 100 genuine samples were incorrectly

rejected. Other low false rejection rates were 0.02 and 0.03, attained by members

45 and 18 respectively. The above rates would typically be considered acceptable

for the FRR performance variable.
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The highest FRR of 0.22 was attained by training group members 61 and 74. This

meant that 22 of their 100 genuine samples were incorrectly rejected. Other high

false rejection rates were 0.21 and 0.19, attained by members 3 and 43 respectively.

The above rates would de�nitely be considered unacceptably high rates for the FRR

performance variable.

In total there were 14 training group members whose FRR was above 0.1 (i.e.

10 out of 100). In some circumstances (though probably not many), 0.1 may be

considered an acceptable upper limit for the FRR. For example in a mission critical

application, the FAR would be required to be as low as possible; this restriction

applied to the FAR would very likely result in a higher FRR (so the accuracy required

for this rate may be relaxed).

However, most researchers would obviously prefer a lower FRR. For example 0.05

may be considered a more preferred upper limit. From Table 7.3, it can be seen that

14 training group members achieved a FRR less than or equal to 0.05. Therefore,

22 members had rates greater than 0.05 and less than or equal to 0.1.

As demonstrated in Table 7.3, the training group members who attained the four

best FAR scores also achieved some of the best FRR scores. That is, member 85

(with a FAR of 0.0 and a FRR of 0.0), member 52 (with a FAR of 0.00009524 and

a FRR of 0.01), member 16 (with a FAR of 0.00009524 and a FRR of 0.05), and

member 18 (with a FAR of 0.00047619 and a FRR of 0.03).

Also, the training group members who attained the four worst FAR scores

achieved some of the worst FRR scores. That is, member 43 (with a FAR of

0.15019048 and a FRR of 0.19), member 74 (with a FAR of 0.144 and a FRR

of 0.22), member 3 (with a FAR of 0.126 and a FRR of 0.21), member 12 (with a

FAR of 0.10628571 and a FRR of 0.12).

Contrary to the observations just highlighted, member 61 had the equal highest

FRR of 0.22 (22 in 100 genuine samples falsely rejected), yet attained a FAR of

only 0.008667 (91 in 10,500 impostor samples incorrectly accepted). Member 49

had a rather high FAR of 0.08647619 (908 in 10,500 impostor samples incorrectly

accepted), yet attained a FRR of only 0.06 (6 in 100 genuine samples falsely rejected).
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The last two rows of Table 7.3 provide the average and standard deviation FAR

and FRR �gures, for all training group members, for the keystroke dynamics phase

of the experiment. The average FAR was 0.02766095 (2.766%), with a standard

deviation of 0.03806474; the average FRR was 0.0862 (8.62%), with a standard de-

viation of 0.0515. These �gures demonstrated that the keystroke dynamics phase of

the experiment performed reasonably well (compared to the research e�orts reviewed

in Chapter 3 section 3.4).

It meant that on average, there was approximately a 9 in 100 chance that any

of the 50 training group members would have one of their own genuine samples

incorrectly rejected. Also on average, there was approximately a 290 in 10,500

chance that any training group member would have an impostor sample incorrectly

accepted as their own.

Comparison with Reviewed Keystroke Dynamics Research

The average FAR and average FRR�for the 50 training group members�provide

�gures that permit a comparison with the results of the research e�orts reviewed in

Chapter 3 section 3.4.1. Though the majority of those research e�orts designed their

experiments based on a uni-modal approach�as opposed to the current study, which

was designed to facilitate a multi-modal approach�it is still feasible to compare

other research results with those of the current study, as in most cases the same

performance variables (that is, the FAR and the FRR) were used7.

Comparison to Past Studies Using Statistical Analysis Methods

Firstly, a comparison between the results achieved in the current study and those

achieved by research e�orts that utilised deterministic statistical analysis methods

of keystroke dynamics data will be considered. Table 7.4 presents a summary of the

results achieved by research e�orts that adopted such analysis methods.

7As noted in Chapter 3 section 3.4.1, numerous authors expressed these performance variables
as a percentage. That is, the percentage of the FAR and the percentage of the FRR. However in
Table 3.2 columns 9 and 10, the �gures were denoted as their actual rates (i.e. the percentage
divided by 100). Therefore, any discussion comparing the performance variables will denote both
the actual rate and the percentage rate (in parentheses).
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The information in Table 7.4 is duplicated from Table 3.2 in Chapter 3 section

3.4.1, and is provided for convenient comparison between the results of the reviewed

research and the results of the current study8.

Reviewed Paper FAR FRR

Gaines et al., 1980 0.0 0.04
Umphress and Williams, 1985 0.0588 0.1176
Leggett and Williams, 1988 0.05 0.055
Joyce and Gupta, 1990 0.0025 0.1636
Bergadano et al., 2002 0.0001 0.04
Current Study, 2010 0.02766 0.0862

Table 7.4: Summary of Reviewed Papers Using Statistical Analysis Methods

The earliest reviewed research paper achieved a FAR of 0.0 and FRR of 0.04

(4.0%) (Gaines et al., 1980). The results achieved in the current study did not

achieve the same accuracy as those by Gaines et al., (1980). The FAR of 0.02766095

achieved in the current study was less accurate than the FAR of 0.0 achieved by

Gaines et al., (1980). Also, the FRR of 0.0862 was less accurate than the 0.04

achieved by Gaines et al., (1980).

However, although the results achieved by Gaines et al., (1980) appeared very

impressive, the authors stated that methodological issues implied some uncertainty

in their results. These concerns were the small number of participants (6 only), and

the small number of samples collected from those 6 participants (3 samples from

each participant).

This small number of samples per participant would not normally capture the

intra-class variance, so variability in the biometric data for the same individual

may not be visible. Therefore, the intra-class variance would most likely be very

low compared to the inter-class variance, leading to an apparent improvement in

performance of the classi�er.

For the current study, 90 participants provided 140 samples each. This provided

more samples for training and testing purposes; each participant was tested for false

acceptance with 10,500 impostor samples and for false rejection with 100 genuine

8Note that a direct comparison between the experimental results of the publications listed in
Table 7.4 (and also between them and the results of the current experiment) would be misleading.
All of these results can only be viewed as an informal indicator of algorithmic performance because
di�erent data sets were used in the experiments.
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samples. Therefore, a much �ner granularity can be attributed to both performance

variables in the current study.

Other di�erences between the two studies were:

• Data �ltering. Gaines et al., (1980) included only time values associated with

digraphs that occurred 10 times or more. According to the authors, this was

necessary because of the small amount of data collected. The current study

utilised 4 statistics (associated with an assumed normal distribution), to �lter

noisy data that could have impeded ANN pattern recognition capabilities (refer

Chapter 5 section 5.4.4).

• Metrics used. Gaines et al., (1980) used one metric only, the keystroke latency

discussed in Chapter 3 section 3.3. As explained in that section, the use of

two metrics�the keystroke duration and digraph latency�has become the

accepted `norm'. These two metrics were used in the current study.

• Analysis method. In their experiment, Gaines et al., (1980) utilised a tra-

ditional T-test for classi�cation of typing patterns, whilst the current study

utilised ANNs for this task. As discussed in the review in Chapter 3 sec-

tion 3.4.1, ANNs have demonstrated more discriminative pattern recognition

capabilities than deterministic statistical methods of analysis.

All of the issues just discussed, could imply uncertainty in the results achieved

by Gaines et al., (1980), whereas the methodology adopted in the current study

should inspire more con�dence in the achieved results.

Gaines et al., (1980) recommended the use of certain character combinations

to provide better discrimination between typing patterns (refer Chapter 3 section

3.4.1). These character combinations are all typed by the right hand in the stan-

dard typing method. By incorporating the recommended combinations into the

character string that participants were required to type�and also incorporating

the corresponding combinations typed by the left hand�the results of the current

research indicated a more distinctive signature for each participants' typing pattern.
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The results achieved in the current study demonstrated better accuracy than the

results presented by Umphress and Williams (1985), with a FAR of 0.0588 (5.88%)

and a FRR of 0.1176 (11.76%), and Leggett and Williams (1988), with a FAR of 0.05

(5.0%) and a FRR of 0.055 (5.5%). The study by Joyce and Gupta (1990) achieved

a FAR of 0.0025 (0.25%) and a FRR of 0.1636 (16.36%). Whilst the FAR was more

accurate than that achieved in the current study (0.0025 compared to 0.02766095),

the FRR was much less accurate (0.1636 compared to 0.0862).

The above authors all used deterministic statistical analysis methods. Their

experiments also exhibited similar methodological concerns to those of Gaines et

al., (1980); that is, a small number of participants were recruited, a small number

of samples was provided by each participant, and only one metric was used. Again,

these concerns could imply uncertainty in the results achieved by those authors.

The experiment by Bergadano et al., (2002) achieved a FAR of 0.0001 (0.01%)

and FRR of 0.04 (4%). Both the FAR and the FRR achieved better accuracy than

those achieved in the current study. The number of participants was comparable to

that used in the current study, however, the number of samples provided by par-

ticipants was much lower (5 compared to 140). Even though the authors generated

more test samples from the initial inputs, that procedure�as discussed in Chapter

3 section 3.4.1�raises experimental validity concerns which could give rise to some

doubt concerning the reported performance.

The Bergadano et al., (2002) study also di�ered from the current study in the

following points:

• The authors used trigraphs to calculate metrics and other measurements. In

the current study digraphs were used to determine metrics.

• Only one metric was used in the their study (the degree of disorder), whereas

the current study used two (the keystroke duration and digraph latency).

• The authors used a resolution of 10 milliseconds to measure keystroke events,

whereas the current study used a 1 millisecond resolution.

• The authors used deterministic statistical methods for classi�cation, whereas

in the current study ANNs were used for classi�cation.
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The degree of disorder of trigraphs, and the 10 millisecond keystroke event cap-

ture resolution, are courser measurements than those typically used by other research

e�orts. These facts could raise concerns about whether an individuals typing pattern

remains uniquely identi�able (using the stated measurements).

Before comparing the current results with the research e�orts that employed

machine learning techniques for data analysis, the point should be clari�ed that

the current study did utilise some statistical methods in the experiment. Statistical

methods were used for feature selection; that is, selection of the most appropriate

features�by discarding the most noisy features�to assist the ANNs in performing

their pattern recognition task. The process is explained in detail in Chapter 5 section

5.4.4. However, the analysis of the keystroke dynamics data�for the purpose of

recognising typing patterns�was performed only by ANNs.

Comparison to Past Studies Using Machine Learning Techniques

A comparison between the results achieved in the current study and those achieved

by research e�orts that utilised machine learning techniques (other than ANNs) for

analysis of keystroke dynamics data will now be considered. Table 7.5 presents a

summary of the results achieved by research e�orts that adopted machine learning

techniques for analysis. The information in Table 7.5 is duplicated from Table 3.2

in Chapter 3 section 3.4.1, and is provided for convenient comparison between the

results of the reviewed research and the results of the current study9.

Reviewed Paper FAR FRR

Peacock, 2000 0.042 0.08
Yu and Cho, 2004 0.0 0.0369
Jiang et al., 2007 0.0254 0.0254
Hu et al., 2008 0.00045 0.0
Current Study, 2010 0.02766 0.0862

Table 7.5: Summary of Reviewed Papers Using Machine Learning Techniques

9Note that a direct comparison between the experimental results of the publications listed in
Table 7.5 (and also between them and the results of the current experiment) would be misleading.
All of these results can only be viewed as an informal indicator of algorithmic performance because
di�erent data sets were used in the experiments.
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In comparison with Peacock (2000), the current study achieved a similar FRR

result, with Peacock (2000) achieving 0.08 (8.0%) compared to the current study

with 0.0862 (8.62%). However, the current study achieved a more accurate result

for the FAR; 0.02766095 (2.766%) compared to 0.042 (4.2%).

Some of the methodological concerns exhibited in the experiments discussed

previously (that is, for those that used deterministic statistical analysis methods)

were also evident in the experiment conducted by Peacock (2000).

The number of participants was 11 only, and the number of samples provided

by each of those participants was 20 only. Also, Peacock (2000) used only one

metric; the sum of all 6 possible metrics calculable from any digraph (refer Chapter

3 sections 3.3 and 3.4.1).

The experiment by Peacock (2000) was the �rst to utilise the k-Nearest Neigh-

bour (KNN) algorithm for typing pattern classi�cation. The results were reasonably

comparable to other research of the time, though as stated in the previous paragraph,

some uncertainty could be attributed to the outcomes.

Hu et al., (2008) also used the KNN algorithm as a classi�er. However, like

Bergadano et al. (2002), the authors used trigraphs instead of digraphs to calculate

metrics; the one metric used was the generalised degree of disorder (which included

the similarity measure A described in Chapter 3 section 3.4.1).

The results were impressive, with a FAR of 0.00045 (0.045%) and a FRR of 0.0.

Because similar metrics were calculated from trigraphs, the results could rightly

be compared with those achieved by Bergadano et al., (2002). Hu et al., (2008)

could justi�ably assert that the di�erent method of classi�cation, and the similarity

measure used, achieved improved results compared to those achieved by Bergadano

et al., (2002).

The experiment conducted by Hu et al., (2008) also achieved more accurate

results than those achieved in the current study. Di�erences between the Hu et al.,

(2008) study and the current study were:

1. The number of legitimate users (19) was smaller than the 50 (training group

members) used in the current study.



380 CHAPTER 7. DISCUSSION OF RESULTS

2. The number of samples per legitimate user was very small. That is, 5 compared

to the 140 provided by all participants in the current study.

3. The use of trigraphs instead of digraphs to calculate the generalised degree of

disorder and the similarity measure A.

Points 1 and 2 could raise some concerns. Would a similar accuracy be achieved

if a larger population and quantity of samples (per legitimate user) were used?

However, the results were very encouraging; it appears that the use of the generalised

degree of disorder (incorporating the similarity measure A) may help to overcome

some variability issues inherent in keystroke dynamics data.

Yu and Cho, (2004) achieved a FAR of 0.0 and a FRR of 0.0369 (3.69%) using

a genetic algorithm approach for data analysis�and subsequent feature selection�

and support vector machines for classi�cation. The results by Yu and Cho, (2004)

were obviously more accurate than those achieved in the current study (with a FAR

of 0.02766095 and a FRR of 0.0862).

Yu and Cho, (2004) achieved a FAR of 0.0 by forcing that performance variable

to that value (by manipulating the decision threshold), at the expense of increasing

the FRR (to 0.0369). The results of the current study were not forced to attain

a FAR of 0.0. It would have been possible to force the FAR to 0.0, however this

was considered contrary to the purpose of the experiment and could have led to the

results being considered contrived.

The number of participants and the number of samples used for testing purposes

in the Yu and Cho, (2004) experiment, were considerably smaller than those in the

current experiment. In particular, there were only 75 samples used to test false

acceptance, which determines the value of the FAR performance variable. Thus,

less con�dence could be attributed to the results achieved by Yu and Cho, (2004).

Overall, the results the Yu and Cho, (2004) experiment did not suggest that any

de�nitive advantage was gained by using support vector machines for classi�cation

(compared to using ANNs for that purpose). The good results achieved in their

experiment did demonstrate that the use of feature selection techniques�to reduce

the noise in keystroke dynamics data�was bene�cial. The results also re-a�rm that
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machine learning techniques (in general) perform better, than deterministic analysis

methods, for pattern recognition tasks involving keystroke dynamics.

Jiang et al, (2007) used Gaussian modeling and Hidden Markov Models to per-

form data analysis for their experiment. The number of participants for their ex-

periment was larger than for the current experiment, though the number of samples

provided by each participant was much smaller.

As discussed in Chapter 3 section 3.4.1, Jiang et al, (2007) independently re-

duced the FAR and FRR by adjusting the decision threshold. Recall that adjusting

one performance variable typically impacts (in the opposite direction) on the other

variable. Their results were reasonably acceptable10, with a FAR and FRR of ap-

proximately 0.0254 (2.54%). The current study achieved similar accuracy for the

FAR as that attained by Jiang et al., (2007) (0.02766095 compared with 0.0254),

but was slightly higher for the FRR (0.0862 compared with 0.0254).

Considering the methodological issues (the small number of samples per partici-

pant and the use of only one metric), and the results achieved by Jiang et al. (2007),

the use of Gaussian Modeling and Hidden Markov Models to analyse and classify

keystroke dynamics data did not appear to have achieved any de�nitive advantage

over other methods. The current study did not su�er from the same methodological

issues, and yet performed as well by using normality statistics for data �ltering and

ANNs for classi�cation.

Comparison to Past Studies Using Arti�cial Neural Networks

A comparison between the results achieved in the current study and those achieved

by research e�orts that utilised Arti�cial Neural Networks (ANNs) for analysis of

keystroke dynamics data will now be considered. Table 7.6 presents a summary

of the results achieved by research e�orts that adopted ANNs for analysis. The

information in Table 7.6 is duplicated from Table 3.2 in Chapter 3 section 3.4.1, and

is provided for convenient comparison between the results of the reviewed research

and the results of the current study11.

10As explained in Chapter 3 section 3.4.1, the results were attained from the average of the
reported results, at the threshold value of 1.5.

11Note that a direct comparison between the experimental results of the publications listed in
Table 7.6 (and also between them and the results of the current experiment) would be misleading.
All of these results can only be viewed as an informal indicator of algorithmic performance because
di�erent data sets were used in the experiments.
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Reviewed Paper FAR FRR

Brown and Rodgers, 1993 0.0 0.115
Obaidat and Sadoun, 2004 0.0 0.0005
Cho et al., 2000 0.0 0.01
Abernethy et al., 2004 0.019 0.108
Revett et al., 2007 0.0195 0.0195
Current Study, 2010 0.02766 0.0862

Table 7.6: Summary of Reviewed Papers Using Arti�cial Neural Networks

Brown and Rogers (1993) were the �rst to conduct experimentation using ANNs

for recognition of typing patterns. They used a Kohonen network to identify outlier

data in input samples, and used the Single Layer Perceptron (SLP), the Multi-Layer

Perceptron (MLP), and a distance measure to recognise typing patterns.

The reported results were a FAR of 0.0 for all three classi�ers, with a FRR

of 0.149 (14.9%) for the distance measure, 0.174 (17.4%) for the SLP, and 0.115

(11.5%) for the MLP.

As discussed in Chapter 3 section 3.4.1 the possible reasons for the less than

impressive FRR scores were:

• Forcing the FAR to 0.0 would negatively impact on the FRR scores, by driving

that rate higher. This practice was avoided in the current study.

• SLPs do not employ error back propagation when updating network weight

values. Because of this, the SLPs are limited in their ability to recognise

complex patterns in high dimensional data.

• Only 10 samples were available when testing for false rejection�measured by

the FRR�which resulted in a course granularity for that performance variable.

• Approximately 8 characters only were existent in the sample string entered by

participants, which may have had an impact on the classi�ers performance.

In the current study, the FAR of 0.02766095 (whilst not ideal) could be accept-

able in a general authentication setting. This computes to approximately 290 sam-

ples falsely classi�ed (out of 10,500 samples available for testing false acceptance).

Though not as good a result when compared to the Brown and Rogers (1993) FAR

of 0.0, it was still a reasonable result (given that the performance variable was not

forced to a particular rate).
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The FRR of 0.0862 achieved in the current study, was more accurate than those

achieved by Brown and Rogers (1993). Even given the above conditions which could

have negatively impacted on the FRR scores achieved by Brown and Rogers (1993),

the FRR of 0.0862 achieved in the current study (which computes to approximately

9 genuine samples out of 100 falsely rejected) was a comparatively good result.

Obaidat and Sadoun (1997) achieved excellent results in their experiment. As

reported in Chapter 3 section 3.4.1, the best performing classi�ers were the Multi-

Layer Perceptron with back-propagation (MLP-BP), the Fuzzy ARTMAP (FA), the

Radial Based Function Network (RBFN), and the Learning Vector Quantisation

network (LVQ); their respective FAR and FRR results were (0.0, 0.0005), (0.0, 0.0),

(0.0, 0.0), and (0.0, 0.0).

As the current study utilised the MLP-BP, a comparison between the results

achieved in both studies�for that classi�er�will be made. Obviously, the FAR of

0.0 and the FRR of 0.0005 (0.05%) achieved by Obaidat and Sadoun (1997) were

better numerical results than those achieved in the current study (with a FAR of

0.02766095 and a FRR of 0.0862).

In the Obaidat and Sadoun (1997) experiment, each of 15 participants provided

15 samples only to try to impersonate the other 14 participants; that is, there

were only 210 (14x15) samples available (for each participant) when testing for

false acceptance. Given this, and the fact that there were only 15 participants

who provided samples, it raises the question of whether the same results could be

achieved given a larger number of participants and given a larger number of samples

for testing false acceptance. In the current study, there were 10,500 samples (for

each of the 50 training group members) available for testing false acceptance.

Also though not stated by the authors, it could be assumed that with only 15

participants, the ANN would have been exposed to the data (during the training

process) provided by all 15 participants. This means that the trained ANN would

have been tested on data it had already seen; generalising on the results of such a

training and testing regime may bring into question the achieved accuracy.
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For the current study, 5,600 (40x140) of the 10,500 samples were supplied by

non-training group members. This meant the ANNs had not been exposed to these

data prior to testing, and thus some level of generalisability can legitimately be

claimed. Though it is unwise to generalise too much with only 50 training group

members, the current study should o�er reasonable con�dence in its FAR result.

According to their report, Obaidat and Sadoun (1997) had each of the 15 partici-

pants provide 9,000 genuine samples; they used 4,500 samples per participant in the

training process. This meant that they had 4,500 samples available to test positive

recognition. This number of samples would exhibit a very �ne granularity for the

FRR performance variable, and so the result could be accepted with con�dence.

The current study used 100 samples when testing false rejection, which is a small

number in comparison to 4,500. Whilst the FRR performance variable in the current

study did not achieve a similar granularity to that of Obaidat and Sadoun (1997),

it did achieve reasonable level of accuracy.

Cho et al., (2000) used the Multi-Layer Perceptron as an auto-associator (MLP-

AA) rather than in the typical fashion. Their results�a FAR of 0.0 and a FRR of

0.01 (1.0%)�again were very impressive. However as discussed in Chapter 3 section

3.4.1, there were validity issues with the experiment. As with many experiments

in this �eld, a small number of participants were recruited. Of more concern was

that data collection was unsupervised. In the current study, all data collection was

supervised so no opportunity existed for subversion of the input process, and thus

input data could not be compromised.

For their experiment, Cho et al., (2000) had each of the 21 participants provide

an average of 275 samples to train the ANN (the last 75 were used to test for positive

recognition). They also recruited 15 impostors to try to impersonate each of the

21 original participants (by providing 75 samples of each password); that is, there

were 1,125 (15x75) samples available when testing for false acceptance. Again, it

may be questionable if the same results could be achieved given a larger number

of participants and given a larger number of samples for testing false acceptance.

In the current study, there were 10,500 samples (for each of the 50 training group

members) available for testing false acceptance.
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Thus the granularity of the FAR performance variable in the current study was

ten times �ner than that of the Cho et al., (2000) study (i.e. 10,500 impostor tests

per participant compared to 1,125 impostor tests per participant).

The �ner granularity of the FAR in the current study could be a reason for the

higher rate achieved when compared to both the Obaidat and Sadoun (1997) and

the Cho et al., (2000) studies. Even so, the rate achieved in the current study could

still be considered a reasonably acceptable rate in some circumstances.

The author and his collaborators, in an earlier study, also used the Multi-Layer

Perceptron with back-propagation (MLP-BP) as a classi�er (Abernethy et al., 2004).

For the experiment, 50 participants were recruited; 25 were randomly assigned to

a training group with the remaining 25 assigned to a non-training group. Each

participant provided 40 samples of the required text; 30 were randomly selected for

training an ANN, and the remaining 10 used for testing purposes.

For the current study, 90 participants were recruited; 50 were randomly assigned

to a training group with the remaining 40 assigned to a non-training group. Each

participant provided 140 samples of the required text; 30 were randomly selected

for training an ANN, 10 were randomly selected for validation during training, and

the remaining 100 used for testing purposes.

The number of samples available for testing false acceptance (per participant) in

the previous experiment was 1,240. The number of samples available for testing false

rejection (per participant) was 10. Whilst the quantity for testing false acceptance

may be acceptable in some circumstances, the 10 for testing false rejection resulted

in a very course granularity for the FRR performance variable.

In the current study, there were 10,500 samples available for testing false ac-

ceptance (per participant) and 100 samples available for testing false rejection (per

participant). These quantities should invoke more con�dence in the results achieved

in the current study.

A primary purpose for the previous experiment was to determine the optimal

character string length for use in keystroke dynamics authentication. It was deter-

mined that the optimal character string length was �fteen; the results at that length

were a FAR of 0.0119 (1.19%) and a FRR of 0.108 (10.8%).
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However because of limitations noted in the previous experiment, some un-

certainty could be attributed to the results achieved. Even though the FAR of

0.02766095 achieved in the current study was less accurate than that achieved in

the previous experiment, the author has much more con�dence in the current results.

Apart from the greater number of samples available for testing, the current study

also performed pre-treatment of the raw typing data before exposing the input to the

ANNs. The pre-treatment took the form of feature selection to reduce the noise in

raw data. As was evident, from the previous experiments reviewed, feature selection

has demonstrated a positive impact on results.

Revett et al., (2007) used primary and secondary metrics to represent typing

patterns, and the Probability Neural Network (PNN) to recognise patterns. As

explained in Chapter 3 section 3.4.1, no discrete values were provided�for the two

performance variables (FAR/FRR)�to report the results; rather the results were

reported as a combined average of 0.039 (3.9%).

However, to compare results with other experiments, it was deemed necessary

to be in possession of two discrete values for these performance variables. So for

discussion purposes, the reported average has been evenly divided into two to yield

a FAR of 0.0195 (1.95%) and a FRR of 0.0195 (1.95%)12. With a FAR of 0.02766095

and a FRR of 0.0862, the current study did not achieve the same level of accuracy

as the Revett et al., (2007) experiment.

Though the number of participants (legitimate users) for the Revett et al., (2007)

experiment was smaller than that for the current study, the number of samples

supplied did provide a reasonable number for testing. Given the available data, and

the reported results, the experiment did not meet similar accuracy to those of other

experiments that used ANNs for classi�cation (excluding the current study). It is

unlikely that the PNN would be responsible for the loss of accuracy; as stated by

the authors, PNNs have proved to be a reliable classi�er. A possible cause may be

the primary and secondary metrics used to represent the typing patterns.

12Though there may be other methods to isolate discrete values from the combined average, the
simplest has been adopted here.
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7.2.1.1 Summary of Keystroke Dynamics Results

From the previous discussions, the following can be observed in relation to the

experimental results achieved in the current study for the keystroke dynamics phase:

• The average FAR of 0.02766095 (2.766%) meant that on average approximately

290 impostor samples (out of 10,500) were incorrectly accepted. Whilst this

average result was not as accurate as some other research e�orts (particularly

those that used ANNs for classi�cation), in non-mission critical applications it

may be acceptable. The results demonstrated that a reasonable level of accu-

racy is achievable for keystroke dynamics, which could allow for its application

in a multi-modal authentication system.

• The average FRR of 0.0862 (8.62%) meant that on average approximately 9

genuine samples (out of 100) were incorrectly rejected. This was a less than

ideal achievement, even for non-mission critical applications.

• In comparison to the reviewed research e�orts that utilised deterministic sta-

tistical analysis methods, the current study generally achieved better results

(if methodological concerns with those reviewed research e�orts are taken into

account). The exception could be the very good results achieved by Bergadano

et al. (2002), although some areas of concern were still apparent.

• In comparison to the reviewed research e�orts that utilised machine learning

techniques (other than ANNs), the current study generally achieved similar ac-

curacy (again, if methodological concerns with those reviewed research e�orts

are taken into account). Exceptions could be the impressive results achieved

by Yu and Cho (2004) and Hu et al. (2008), although some areas of concern

were apparent in the Yu and Cho (2004) experiment.

• In comparison to the reviewed research e�orts that utilised Arti�cial Neural

Networks, the current study generally achieved less accuracy. The reason for

the less than accurate results is unknown; it is possible that the feature selec-

tion method adopted in the current study was not as successful as anticipated.
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When considering the studies involving ANNs, there are two points that need

clari�cation and emphasis:

1. The accepted approach when testing ANNs is to maintain some data sets

consisting of participants' samples that the ANNs has not been exposed to

during training. This provides an indication of the ability to generalise based

on the results attained. Brown and Rogers (1993), Obaidat and Sadoun (1997),

Cho et al. (2000), and Revett et al., (2007) used data for testing that the ANN

had previously been exposed to during training. In the current study, data

from the 40 non-training group members were set aside for testing purposes

only. Thus the trained ANNs had no prior exposure to this data, and so

con�dence in the results (to be generalisable) should be apparent.

2. In the previously mentioned research e�orts, one ANN was trained to distin-

guish between all legitimate users. As pointed out by Cho et al., (2000) and

Yu and Cho (2004), this approach has its limitations. If a new user needs

to be added to the system, the whole ANN needs to be trained again (as

the number of users increases, so does the time taken to train the ANN).

Also, the more users that the ANN needs to di�erentiate between, the larger

the problem space becomes and so maintaining accuracy becomes increasingly

di�cult. In the current study, each training group member had one ANN

trained exclusively to recognise their typing pattern. Whilst some data from

the other training group members was used to create negative case samples

for the training process, each ANN was trained only to recognise one member.

This occurred for all training group members.

Whilst the results for the keystroke dynamics phase of the current experiment

were less accurate than other experiments that used ANNs to recognise typing pat-

terns, they were generally as accurate�or more accurate�than other experiments

that used non-ANN methods to recognise typing patterns.

The next section discusses the results of the �ngerprint recognition phase of the

experiment, and compares them with other research in that �eld.
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7.2.2 Discussion Of Fingerprint Recognition Results

The statistics in Table 7.7 provide information regarding the calculation of the de-

cision threshold, for all 50 training group members, for the �ngerprint recognition

phase of the experiment.

Figures in column 2 (the Area Under the ROC Curve) of Table 7.7 show that 47

of the 50 training group members achieved an area of 1. This was a very positive

result, as an area of 1 demonstrates perfect recognition (at the nominated decision

threshold). Those members with an area less than 1 were 23, 74, and 76, with areas

of 0.999992, 0.999996, and 0.999999 respectively.

Other points of interest in Table 7.7 are:

• The con�dence level for all 50 training group members was 0.5, which indicated

that no member required an adjustment to their con�dence level because of

poor classi�er performance.

• Members 23 and 76 had the highest decision threshold values of 0.97 and 0.98

respectively. However, it should be noted that there does not seem to be any

evidence of a correspondence between the adjustable determinant value and

the decision threshold for any member13.

• The decision thresholds for the �ngerprint recognition phase of the experiment

were generally lower than those in the keystroke dynamics phase. The average

for the decision thresholds was 0.4506 with a standard deviation of 0.37543667.

Note that the average for this phase was more than half that of the keystroke

dynamics phase (0.4506 compared to 0.9486), and the standard deviation for

this phase was approximately 10 times that of the keystroke dynamics phase

(0.37543667 compared to 0.03811958). Though the larger standard deviation�

for this phase�suggests a greater variance in the distribution of the decision

thresholds, there seems no reason to suspect any statistical implications about

the distribution because the average of the decision thresholds was so much

lower than that of the keystroke dynamics phase.

13Given the method used to calculate the adjustable determinant value (described in Chapter 6
section 6.3.4), no correspondence should be expected.
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Participant Area Under

ROC Curve

True Positive

Mean

Con�dence

Level

Adjustable

Determinant

Value

Decision

Threshold

1 1 0.99996294 0.0500 0.94996294 0.84

2 1 0.99996188 0.0500 0.94996188 0.95

3 1 0.99802990 0.0500 0.94802990 0.61

5 1 0.98105692 0.0500 0.93105692 0.02

7 1 0.99997253 0.0500 0.94997252 0.22

9 1 0.99998120 0.0500 0.94998120 0.20

12 1 0.99997238 0.0500 0.94997238 0.16

14 1 0.99976722 0.0500 0.94976722 0.39

16 1 0.99887867 0.0500 0.94887867 0.09

18 1 0.99969411 0.0500 0.94969411 0.64

20 1 0.99995251 0.0500 0.94995251 0.94

21 1 0.99995280 0.0500 0.94995279 0.20

23 0.99999200 0.99681243 0.0500 0.94681243 0.97

24 1 0.99949265 0.0500 0.94949264 0.81

25 1 0.99968960 0.0500 0.94968960 0.94

27 1 0.99989653 0.0500 0.94989653 0.85

29 1 0.99997006 0.0500 0.94997006 0.04

32 1 0.99993341 0.0500 0.94993341 0.03

34 1 0.99980600 0.0500 0.94980600 0.59

36 1 0.99996920 0.0500 0.94996920 0.67

38 1 0.99799319 0.0500 0.94799319 0.35

40 1 0.99994016 0.0500 0.94994016 0.05

41 1 0.99996204 0.0500 0.94996204 0.05

43 1 0.99993914 0.0500 0.94993914 0.03

45 1 0.99988545 0.0500 0.94988545 0.08

46 1 0.99994543 0.0500 0.94994543 0.90

47 1 0.99988648 0.0500 0.94988648 0.11

49 1 0.99985759 0.0500 0.94985759 0.95

52 1 0.99988577 0.0500 0.94988577 0.94

54 1 0.99997126 0.0500 0.94997126 0.16

56 1 0.99995320 0.0500 0.94995320 0.66

58 1 0.99990624 0.0500 0.94990624 0.93

60 1 0.99997203 0.0500 0.94997203 0.10

61 1 0.99997752 0.0500 0.94997752 0.02

63 1 0.99993195 0.0500 0.94993195 0.93

65 1 0.99995170 0.0500 0.94995170 0.30

67 1 0.99994074 0.0500 0.94994074 0.22

68 1 0.99997243 0.0500 0.94997243 0.87

69 1 0.99995608 0.0500 0.94995608 0.04

72 1 0.99986472 0.0500 0.94986472 0.01

74 0.99999600 0.99571402 0.0500 0.94571402 0.93

76 0.99999900 0.99910068 0.0500 0.94910068 0.98

78 1 0.99997427 0.0500 0.94997427 0.75

80 1 0.98823433 0.0500 0.93823433 0.02

81 1 0.95769181 0.0500 0.90769181 0.41

83 1 0.99989038 0.0500 0.94989038 0.41

85 1 0.99995190 0.0500 0.94995190 0.19

87 1 0.99995996 0.0500 0.94995996 0.93

89 1 0.99995232 0.0500 0.94995232 0.03

90 1 0.99069618 0.0500 0.94069618 0.02

Average 0.99999974 0.99801224 � 0.94801224 0.4506

SD 0.00000123 0.00672410 � 0.00672410 0.37543667

Table 7.7: Duplication of Fingerprint Recognition Statistics for Threshold Calcula-
tion
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Participant True

Positive

Rate

False

Rejection

Rate

Number

of False

Rejections

False

Acceptance

Rate

Number

of False

Acceptances

1 1 0 0 0 0

2 1 0 0 0 0

3 1 0 0 0 0

5 1 0 0 0 0

7 1 0 0 0 0

9 1 0 0 0 0

12 1 0 0 0 0

14 1 0 0 0 0

16 1 0 0 0 0

18 1 0 0 0 0

20 1 0 0 0 0

21 1 0 0 0 0

23 0.95 0.05 5 0 0

24 1 0 0 0 0

25 1 0 0 0 0

27 1 0 0 0 0

29 1 0 0 0 0

32 1 0 0 0 0

34 1 0 0 0 0

36 1 0 0 0 0

38 1 0 0 0 0

40 1 0 0 0 0

41 1 0 0 0 0

43 1 0 0 0 0

45 1 0 0 0 0

46 1 0 0 0 0

47 1 0 0 0 0

49 1 0 0 0 0

52 1 0 0 0 0

54 1 0 0 0 0

56 1 0 0 0 0

58 1 0 0 0 0

60 1 0 0 0 0

61 1 0 0 0 0

63 1 0 0 0 0

65 1 0 0 0 0

67 1 0 0 0 0

68 1 0 0 0 0

69 1 0 0 0 0

72 1 0 0 0 0

74 0.95 0.05 5 0 0

76 0.99 0.01 1 0 0

78 1 0 0 0 0

80 1 0 0 0 0

81 1 0 0 0 0

83 1 0 0 0 0

85 1 0 0 0 0

87 1 0 0 0 0

89 1 0 0 0 0

90 1 0 0 0 0

Average 0.9978 0.0022 0.22 0 0

SD 0.009957 0.009957 � 0 �

Table 7.8: Duplication of Fingerprint Recognition Results

The individual training group members' results, demonstrated in Table 7.8, in-

dicate that all training group members achieved a FAR of 0.0. This meant that all

training group members had no impostor samples�out of 10,500�accepted as their

own. This was an excellent result, and re�ective of the AUC �gures presented in

Table 7.7.
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Table 7.8 also showed that only three training group members registered a non-

zero FRR. Members 23 and 74 had the highest FRR of 0.05 and member 76 had a

FRR of 0.01. This meant that members 23 and 74 had 5 samples each (of their 100

genuine samples) incorrectly rejected, and member 76 had only 1 genuine sample

incorrectly rejected. Note that members 23, 74 and 76 were the only members to

register AUC values less than 1. As an area of 1 re�ects perfect recognition (at the

nominated decision threshold), the non-zero FRR for these members veri�es the less

than perfect performance.

The last two rows of Table 7.8 provide the average and standard deviation FAR

and FRR �gures, for all training group members, for the �ngerprint recognition

phase of the experiment. The average FAR was 0.0 with a standard deviation

of 0.0, and the average FRR was 0.0022 with a standard deviation of 0.009957.

These �gures demonstrated that the �ngerprint recognition phase of the experiment

performed extremely well.

It meant that on average, there was approximately a 2 in 1,000 chance that any

of the 50 training group members would have one of their own genuine samples

incorrectly rejected. Also, there was no chance that any training group member

would have an impostor sample (out of 10,500) incorrectly accepted as their own.

Comparison with Reviewed Fingerprint Recognition Research

The average FAR and average FRR, for the 50 training group members, provide

�gures that permit a comparison with the results of the research e�orts reviewed in

Chapter 4 section 4.5. Even though the majority of those research e�orts designed

experiments based on a uni-modal approach�as opposed to the current study which

was designed to facilitate a multi-modal approach�it is still feasible to compare

other research results with those of the current study, as in most cases the same

performance variables (that is, the FAR and the FRR) were used14.

14As noted in 4 section 4.5, numerous authors expressed the performance variables as a percent-
age. That is, the percentage of the FAR and the percentage of the FRR. However in Table 4.5
columns 8 and 9 (Chapter 4 section 4.5), the �gures for the performance variables are denoted as
their actual rates (i.e. the percentage divided by 100). Therefore, any discussion comparing the
performance variables will denote both the actual rate and the percentage rate (in parentheses).
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Table 7.9 presents a summary of the �ngerprint recognition results achieved

by the reviewed research e�orts. The information is duplicated from Table 4.5 in

Chapter 4 section 4.5, and is provided for convenient comparison between the results

of the reviewed research and the results of the current study15.

Reviewed Paper FAR FRR

Jain et al., 1997 na 0.16
Luo et al., 2000 na 0.133
Jiang and Yau, 2000 0.0 0.0997
Lee et al., 2002 0.0002 0.1666
He et al., 2003 0.0001 0.045
Tong et al., 2005 0.00001 0.07
Qi and Wang, 2005 0.0325 0.0605
Jie et al., 2006 0.00001 0.001
Ozkaya et al., 2006 0.03158 0.015
Kumar and Deva Vikram, 2010 0.0113 0.015
Current Study, 2010 0.0 0.0022

Table 7.9: Summary of Fingerprint Recognition Results For Reviewed Papers

To begin with, Jain et al., (1997) and Luo et al., (2000) did not use both of the

above mentioned performance variables, but used what they termed the veri�cation

rate and the reject rate. As explained in Chapter 4 section 4.5, the veri�cation rate

appears to be analogous to the precision measurement (also known as the positive

prediction value) that was de�ned by Equation 6.7 in Chapter 6 section 6.2.1. As

such, no comparative inference between the veri�cation rate and the FAR can be

drawn, and therefore the veri�cation rates have not been reported in Table 7.9

column 2. The reject rate appears to be analogous to the false rejection rate (FRR),

and therefore the reject rates reported by the authors have been registered in Table

7.9 column 3.

As the �ndings of the current experiment were calculated as the FAR and the

FRR performance variables, only the FRR results can be compared with those of

Jain et al., (1997) and Luo et al., (2000). The authors achieved FRR results of 0.16

(16.0%) and 0.133 (13.3%) respectively. The FRR of 0.0022 achieved in the current

experiment demonstrated a more accurate performance than that achieved by Jain

et al., (1997) and Luo et al., (2000).

15Note that a direct comparison between the experimental results of the publications listed in
Table 7.9 (and also between them and the results of the current experiment) would be misleading.
All of these results can only be viewed as an informal indicator of algorithmic performance because
di�erent data sets were used in the experiments.
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Some of the notable di�erences between the Jain et al., (1997) and Luo et al.,

(2000) experiments and the current experiment were:

• The participants in the experiments conducted by the other researchers pro-

vided only 10 samples each. This meant that there were less samples upon

which to base the pattern recognition task. It also meant that there were only

10 samples available to test for false rejection. If their methodologies were

applied to a larger population, it may raise concerns about the achievements.

In the current experiment, 140 samples were provided by each participant with

40 samples used for the pattern recognition task and 100 samples used to test

for false rejection.

• The other researchers used 3 and 4 attributes respectively to represent local

�ngerprint features. In the current experiment, 6 local feature attributes were

utilised. As discussed in Chapter 5 section 5.5.5, to the author's knowledge

no other researchers have used this number of local feature attributes.

• The other researchers incorporated feature set alignment into the overall minu-

tiae matching process, but prior to actual matching. This is a typical approach

for a uni-modal system involving �ngerprint recognition. For their experi-

ments, they used additional ridge information to help with the alignment. In

the current experiment, feature set alignment was treated as a separate pro-

cess because prior transformation of the data sets was required for phase 3 of

the experiment (that is, the data fusion phase).

• In the other researchers' experiments, analysis was performed using string

matching algorithms, and a matching score was determined; this was used as

a basis for the �nal veri�cation decision. The use of a matching score is a typi-

cal approach for uni-modal systems or for data fusion systems operating at the

con�dence score level. For the current experiment, analysis was performed by

ANNs; as the ANNs output probability scores, applying �nal decision thresh-

old values to this score determined classi�cation (thus no matching score was

required).
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Jiang and Yau (2000) used local and global �ngerprint structures for the align-

ment of �ngerprint feature sets. Though the actual alignment method used by these

authors was di�erent to that used in the current experiment, the two methods had

a similar approach in common: local alignment was used to �nd candidate transfor-

mation factors that were then applied to a global alignment process for re�nement.

Again, for the current experiment this process was performed as a pre-processing

step.

Jiang and Yau (2000) performed analysis by calculating a matching certainty

level, based on the comparison of features that had been converted to a polar co-

ordinate system. As a result of the comparison, a normalised matching score was

determined.

The authors presented their results as a FAR of 0.0 and a FRR of 0.0997 (9.97%).

The FAR result achieved in the current study was the same as that achieved by Jiang

and Yau (2000), and the FRR of 0.0022 (in the current study) was more accurate

than their FRR result of 0.0997.

Even though Jiang and Yau (2000) recruited 188 participants, they were required

to provide only 8 samples each. This meant that their were only 8 samples available

for testing false rejection, and 1,496 (187x8) samples (per participant) for testing

false acceptance. Again these are much reduced numbers compared to the current

study�where 100 samples (per participant) were used to test for false rejection and

10,500 samples (per participant) were used to test for false acceptance�and could

raise concerns about the results achieved if their methodology was applied to a larger

population.

Lee et al., (2002) used the average ridge frequency to determine distances between

minutiae in a �ngerprint. The normalised average distance was used in the alignment

process (based on local feature structures), as well as to determine an adaptive

bounding box used in the matching process. The bounding box (applied to the

reference sample minutiae) was used to determine minutiae correspondences between

the reference and query �ngerprints.
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Results derived from ROC graphs presented by the authors were a FAR of 0.0002

(0.02%) and a FRR of 0.1666 (16.66%). The FAR of 0.0 and the FRR of 0.0022

achieved in the current study, demonstrated better accuracy than that achieved by

Lee et al., (2002).

In their experiment, Lee et al., (2002) recruited 100 participants who provided 10

samples each. Thus, there were only 10 samples (per participant) available for testing

false rejection, and 990 (99x10) samples (per participant) for testing false acceptance.

As previously discussed, this may be an inadequate number of classi�cation tests to

demonstrate full con�dence in the �ndings.

He et al., (2003) utilised a similar alignment method to that proposed by Luo et

al., (2000). The authors included the minutia type with the other three local feature

attributes (x and y coordinates and orientation).

For their matching process, He et al., (2003) incorporated bounding box calcula-

tions into the converted polar coordinates of the registered feature set. By comparing

these to other possible transformation sets (converted to the polar coordinate sys-

tem), a matching result for each set was determined. The maximum matching result

that also satis�ed a threshold condition determined whether the query �ngerprint

was accepted as a match to the registered �ngerprint.

The authors tested their methodology on four sections of the FVC2000 Finger-

print database, but provided no information about the number of participants or

the number samples (per participant) used for their experiment.

Results were presented (via ROC graphs) for the four database sections tested.

From the ROC graphs, the best results (recorded for database DB2_a) were a

FAR 0.0001 and FRR 0.045. The results of the current study demonstrated better

accuracy than the He et al., (2003) experiment, but a proper determination can't

be made as the number of participants and the number of samples per participant

in their study is unknown.

Tong et al., (2005) proposed an innovative method for aligning and matching

�ngerprints, by de�ning adjacent feature vectors (explained in Chapter 4 section

4.5). The method incorporated four local feature attributes (x and y coordinates,
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orientation, and minutia type). Once a query sample was aligned with the reference

sample, a similarity level16 was used to determine a normalised matching score.

The authors tested their methodology on three sections of the FVC2000 Finger-

print database, but provided no information about the number of participants or

the number samples (per participant) used for their experiment.

From the ROC graphs used to present the �ndings, the best results (recorded

for database DB2_a) were a FAR 0.00001 and FRR 0.07. The results of the current

study demonstrated better accuracy than the Tong et al., (2005) experiment, though

again a proper determination can't be made as the number of participants and the

number of samples per participant in their study is unknown.

Qi and Wang (2005) used three local feature attributes to represent a minutia.

The authors proposed a method of alignment that incorporated relative orientation

based on angle di�erences (refer Chapter 4 section 4.5).

Matching involved �rstly using a similarity level to identify reference minutia

in both registered and query feature sets. Then utilising three minutiae in close

proximity to form a triangle (in both feature sets), a triangular similarity level

(based on the distance and orientation di�erences of the vertices) was calculated.

If these similarity levels met a pre-de�ned threshold, the minutiae were designated

corresponding minutiae.

The orientation �elds (a global structure) of both �ngerprints were compared,

and a similarity level determined. A normalised matching score was then deter-

mined, which incorporated the triangular similarity level and the orientation �eld

similarity level.

For their experiment the authors used the FVC2002 Fingerprint database (sec-

tion DB_3) comprising 100 participants, who each provided 8 sample �ngerprints.

For the purpose of comparing results from the current study to those achieved by

Qi and Wang (2005), approximate values have been derived from the ROC curve

from Figure 4 in their report. These were a FAR of 0.0325 (3.25%) and a FRR of

0.0605 (6.05%). The results from the current study achieved better accuracy than

those achieved by Qi and Wang (2005).

16Based on Equation 4.10 Chapter 4 section 4.5
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Jie et al., (2006) used the core point of a �ngerprint as the centre of a circle

containing potential reference minutiae, which were represented by four local feature

attributes; the x and y coordinates, the orientation, and the minutia type. The

following processing was applied to both registered and query feature sets. The

features were converted to the polar coordinate system, and the radial angles were

sorted in ascending order.

Matching involved the use of a `circular bounding box'. If a minutia in the query

feature set fell within the bounded region of a minutia in the registered feature

set and met a threshold condition, a correspondence was recorded (via a matching

score). After attempting all combinations of minutiae in the bounded region, the

largest matching score that exceeded the decision threshold condition indicated a

match.

For their experiment Jie et al., (2006) recruited 100 participants, who each pro-

vided 11 sample �ngerprints. Each sample was tested for correct recognition against

the other ten samples provided by the same participant. This meant that the FRR

had a course granularity. Each sample was tested for false acceptance against the

1,089 (i.e 1,100-11) provided by the other participants. These test numbers are ap-

proximately one tenth of the number used in the current study, when the respective

performance variables were determined.

Results presented by Jie et al., (2006) were a FAR of 0.00001 (0.001%) and

a FRR of 0.001 (0.1%). The FAR result achieved in the current study was only

minutely more accurate than that achieved by Jie et al., (2006); 0.0 compared to

0.00001. However, Jie et al., (2006) achieved a marginally more accurate FRR than

the current study; 0.001 compared to 0.0022.

Like Jie et al. (2006), Ozkaya et al. (2006) used the core point as the centre

for a circular bounded region for the alignment process. However, their method did

not utilise the polar coordinate system, but rather the 2D coordinate locations of

minutiae within the bounded region.

A similarity level was determined based on minutiae correspondences between the

query feature set and the bounded regions of the registered feature set. The largest
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similarity level from testing possible transformations (as above) was compared to a

decision threshold to determine a match.

For their experiment Ozkaya et al. (2006) recruited 20 participants, who each

provided 5 sample �ngerprints. Each sample was tested for correct recognition

against the other four samples provided by the same participant. This meant that

the FRR had a very course granularity. Each sample was tested for false accep-

tance against all other 95 samples (provided by the other participants). Again, this

meant a very course granularity for the FAR. These test numbers are well below the

number used in the current study, when the respective performance variables were

determined.

Results presented by Ozkaya et al., (2006) were a FAR of 0.03158 (3.158%) and

a FRR of 0.015 (1.5%). These results were less accurate than those achieved in

the current study, with a FAR of 0.0 (compared to 0.03158) and a FRR of 0.0022

(compared to 0.015).

Kumar and Deva Vikram (2010) developed an alternative feature representation

for the matching purposes. This method did not require alignment, and used only

two local feature attributes: the x and y coordinates.

The method involved locating minutiae in the gray-scale �ngerprint image, re-

ducing the pixilated image to a 15 x 15 matrix, and summing the intensity values

of the minutiae in each matrix cell (if there were minutiae present). The values for

each matrix cell were normalised to the continuous interval [0, 1].

Analysis was performed by the multi-layer back propagation neural network.

Input to the ANN was the result of the above matrix representation (i.e. 15x15 or

225 input values per sample).

For the experiment, 3,500 individuals provided three �ngerprint scans each of

the same �nger (i.e. 10,500 samples). Two of the three samples provided by each of

3,000 individuals were used to train the ANN (i.e. 6,000 samples). Thus there were

4,500 samples remaining to test the trained ANN (only 500 of these patterns had

not been exposed to the ANN during training).
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Results presented by Kumar and Deva Vikram (2010) were a FAR 0.0113 (1.13%)

and a FRR 0.015 (1.5%). These results were less than satisfactory, and were less

accurate than those achieved in the current study.

Some di�erences between the Kumar and Deva Vikram (2010) experiment and

the current study were:

• The other researchers used one ANN to authenticate �ngerprints from 3,000

di�erent individuals. This approach has obvious scalability rami�cations,

which could also lead to inaccuracy as the number of individuals becomes

larger (because the ANN must accurately distinguish between a larger num-

ber of di�erent patterns). In the current study, each individual had an ANN

trained to recognise their pattern only. This approach seems more manageable

and scalable. It also stands to reason that con�dence could be higher if one

ANN had to distinguish only one pattern (from numerous others) rather than

3,000 or more (from among each other).

• Only 2 samples per individual were used when training the ANN in the Kumar

and Deva Vikram (2010) experiment. This seems a very low number of positive

case samples for training purposes, particularly in that 3,000 di�erent patterns

needed to be distinguished. In the current study, 30 positive case samples were

used to train an ANN to recognise one individual's �ngerprint pattern.

• Because each participant provided only 3 samples and 2 of these were used for

training purposes (in the Kumar and Deva Vikram (2010) experiment), only

1 sample per individual was available for testing false rejection. This results

in the most course granularity possible for the FRR performance variable.

The current study had 100 samples (per participant) available for testing false

rejection.

• Most signi�cant of all, the representation method used by Kumar and Deva

Vikram (2010) may not have preserved the uniqueness provided by the local

feature con�guration. The authors method resulted in loss of data due to the

processing required to obtain the representation, and the uniqueness (of the
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�ngerprint features) may have been compromised; it was entirely possible that

two �ngerprints under comparison may have ended up with the same or a

very similar representation.The representation method utilised in the current

study (as described in Chapter 5 section 5.5.5) preserved the local feature

con�guration, and in fact used more attributes to denote a local feature than

any known research e�ort.

7.2.2.1 Summary of Fingerprint Recognition Results

From the previous discussions, the following can be observed in relation to the

experimental results achieved in the current study for the �ngerprint recognition

phase:

• The average FAR of 0.0 meant that no impostor samples (out of 10,500) were

incorrectly accepted for any of the training group members. This average result

demonstrated perfect recognition. Importantly, it demonstrated that the rep-

resentation method used in the �ngerprint phase of the experiment�described

in Chapter 5 sections 5.5.4 and 5.5.5�which was developed to facilitate fea-

ture level data fusion, achieved results better than many other research e�orts.

Thus this method could used for mission critical applications.

• The average FRR of 0.0022 (0.22%) meant that on average their was approx-

imately a 2 in 1,000 chance that a training group member would have one of

their genuine samples incorrectly rejected. This average result was compara-

ble to those achieved by other research e�orts, and again demonstrated the

suitability of the �ngerprint representation method for mission critical appli-

cations.

• In comparison to the reviewed research e�orts that utilised minutiae matching

techniques (i.e. those that did not use ANNs), the current study achieved

better accuracy. The two reviewed studies that achieved the best FAR (of

0.00001) were those by Tong et al., (2005) and Jie et al., (2006); the FAR of

0.0 achieved in the current study was marginally more accurate than these

research e�orts. The reviewed study that achieved the best FRR (of 0.001)
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was that by Jie et al., (2006); the FRR of 0.0022 achieved in the current study

was only marginally less accurate than this result. Though it seems feasible to

compare performance variables with these studies, it should be kept in mind

that they developed minutiae matching techniques (for uni-modal authentica-

tion) that extended previous research in the area. The method developed in

the current study deviated from the typical minutiae matching techniques to

facilitate data fusion at the feature level. The results demonstrated that the

developed method would be appropriate for either uni-modal or multi-modal

authentication.

• In comparison to the reviewed research e�ort that utilised Arti�cial Neural

Networks (for the analysis of �ngerprints), the current study achieved more

accuracy. Kumar and Deva Vikram (2010) achieved a FAR of 0.0113 and a

FRR of 0.015; the current study achieved a FAR of 0.0 and a FRR of 0.0022.

As discussed in the previous section, the Kumar and Deva Vikram (2010)

study used a very di�erent �ngerprint feature representation method, which

may have impacted on the accuracy they achieved (because of data loss). The

representation method used in the current study was developed to maintain

local feature information; as demonstrated by the results, this method returned

better accuracy.

When comparing the current experiment with other research e�orts in the �eld

of �ngerprint recognition, the di�erences in approach and intended purpose impact

on the methodology utilised. As was discussed in the previous section, the majority

of the reviewed studies adopted the minutiae matching approach.

This approach typically incorporates:

• Fingerprint feature alignment (based on minutia location), prior to attempted

matching. The possible alignment methods vary widely, as was evident by the

discussion in the previous section.

• The matching process, which involves identifying all correspondences between

minutia pairs (in both registered and query feature sets). The possible match-

ing methods vary widely, as was evident by the discussion in the previous

section.
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The minutiae matching approach adopted by the reviewed studies were intended

for use in either a uni-modal authentication system or a multi-modal authentication

system (where data fusion occurred at the con�dence score or decision levels).

In the current study, the alignment process was performed as a pre-processing

step. As described in Chapter 5 sections 5.5.4 and 5.5.5, the approach was then to

select 8 local �ngerprint features (incorporating 6 attributes per feature) which were

used as inputs to an ANN.

The intended purpose of the experiment was to fuse (at the feature level) a

�ngerprint feature input vector with a keystroke dynamics input vector, with the

resultant combined feature vector used as input to an ANN.

So, this phase of the experiment and the keystroke dynamics phase were pre-

liminary phases to facilitate the data fusion phase. As the development of a new

representation method for �ngerprint features was required for feature level data

fusion, this preliminary phase was conducted to demonstrate the accuracy and ap-

plicability of that method. The results demonstrated that the method could indeed

be used in either a uni-modal authentication system or a multi-modal authentication

system (and take advantage of the rich feature level data).

The next section discusses the results of the data fusion phase of the experiment,

and compares them with other research in that �eld.
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7.2.3 Discussion Of Data Fusion Results

In this section, a discussion of results for the data fusion phase of the experiment is

presented. The results for the complementary data fusion paradigm are discussed

in section 7.2.3.1, and the results for the cooperative data fusion paradigm are

discussed in section 7.2.3.3. In section 7.2.3.3, The discussion includes the results

of the four experimental stages conducted for the cooperative data fusion paradigm

(that is, the four stages where di�erent proportions of available data were used for

data fusion17).

To recapitulate, their are three paradigms for data fusion (refer Chapter 2 sec-

tion 2.3.1.1). Only the complementary and cooperative data fusion paradigms were

investigated in this study. The competitive paradigm was not investigated because

it authenticates based on a single (the most accurate) data source, which in e�ect

models uni-modal biometric authentication. This was considered at variance with

the intention of the current study, which was to investigate multi-modal biometric

authentication.

7.2.3.1 Complementary Data Fusion

In this section, a discussion is provided for the results of the complementary data

fusion phase of the experiment (explained in Chapter 5 section 5.6.2). Recall that

the complementary data fusion paradigm fuses all available data (i.e. 100%) from

all sources. In the �eld of biometric authentication, this has typically been achieved

by simply concatenating the data from all sources.

Firstly, the �gures in Tables 7.10 and 7.11 are discussed in detail. Then a com-

parison is provided between the complementary data fusion results achieved in the

current study and the results achieved by the research e�orts discussed in Chapter

2 section 2.3.2.2. Note, only those research e�orts that investigated the complemen-

tary data fusion paradigm will be discussed in this section.

The statistics in Table 7.10 provide information regarding the calculation of the

decision threshold, for all 50 training group members, for the complementary data

fusion phase of the experiment.

17Described in Chapter 5 section 5.6.3.
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Participant Area Under

ROC Curve

True Positive

Mean

Con�dence

Level

Adjustable

Determinant

Value

Decision

Threshold

1 1 0.99993349 0.0500 0.94993349 0.78

2 1 0.99993526 0.0500 0.94993526 0.88

3 1 0.99777526 0.0500 0.94777526 0.28

5 1 0.99968306 0.0500 0.94968306 0.08

7 1 0.99981626 0.0500 0.94981626 0.08

9 1 0.99996180 0.0500 0.94996180 0.25

12 1 0.99992290 0.0500 0.94992290 0.12

14 1 0.99961334 0.0500 0.94961334 0.36

16 1 0.99975571 0.0500 0.94975571 0.10

18 1 0.99979385 0.0500 0.94979385 0.92

20 1 0.99980667 0.0500 0.94980667 0.93

21 1 0.99997503 0.0500 0.94997503 0.53

23 0.99999429 0.99489361 0.0500 0.94489361 0.91

24 1 0.99843420 0.0500 0.94843420 0.11

25 1 0.99962849 0.0500 0.94962849 0.88

27 1 0.99986136 0.0500 0.94986136 0.94

29 1 0.99999791 0.0500 0.94999791 0.29

32 1 0.99987604 0.0500 0.94987604 0.05

34 1 0.99965469 0.0500 0.94965469 0.45

36 1 0.99997427 0.0500 0.94997427 0.95

38 1 0.99908305 0.0500 0.94908304 0.13

40 1 0.99996581 0.0500 0.94996581 0.29

41 1 0.99977032 0.0500 0.94977032 0.12

43 1 0.99995303 0.0500 0.94995303 0.04

45 1 0.99994619 0.0500 0.94994619 0.04

46 1 0.99995954 0.0500 0.94995954 0.69

47 1 0.99984224 0.0500 0.94984224 0.11

49 1 0.99988235 0.0500 0.94988235 0.79

52 1 0.99974277 0.0500 0.94974276 0.94

54 1 0.99996927 0.0500 0.94996927 0.09

56 1 0.99997403 0.0500 0.94997403 0.66

58 1 0.99969609 0.0500 0.94969609 0.92

60 1 0.99996602 0.0500 0.94996602 0.23

61 1 0.99967599 0.0500 0.94967599 0.03

63 1 0.99990192 0.0500 0.94990192 0.77

65 1 0.99990294 0.0500 0.94990294 0.05

67 1 0.99976500 0.0500 0.94976500 0.24

68 1 0.99986011 0.0500 0.94986011 0.89

69 1 0.99990128 0.0500 0.94990128 0.02

72 1 0.99992978 0.0500 0.94992978 0.02

74 1 0.99427257 0.0500 0.94427257 0.85

76 1 0.99594715 0.0500 0.94594715 0.10

78 1 0.99997000 0.0500 0.94997000 0.55

80 1 0.99866941 0.0500 0.94866941 0.06

81 1 0.94646377 0.0500 0.89646377 0.17

83 1 0.99981049 0.0500 0.94981049 0.27

85 1 0.99996275 0.0500 0.94996275 0.11

87 1 0.99978510 0.0500 0.94978510 0.95

89 1 0.99992310 0.0500 0.94992310 0.02

90 1 0.99125975 0.0500 0.94125975 0.02

Average 0.99999989 0.99822090 � 0.94822090 0.4012

SD 0.00000081 0.00765436 � 0.00765436 0.35812801

Table 7.10: Duplication of Complementary Data Fusion Statistics for Threshold
Calculation

Figures in column 2 (the Area Under the ROC Curve) of Table 7.10 show that

49 of the 50 training group members achieved an area of 1. This was an extremely

positive result, as an area of 1 demonstrates perfect recognition (at the nominated

decision threshold). The member with an AUC value less than 1 was member 23

with an area of 0.999994.
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Other points of interest in Table 7.10 are:

• The con�dence level for all 50 training group members was 0.5, which indicated

that no participant required an adjustment to their con�dence level because

of poor classi�er performance.

• Members 36 and 87 had the highest decision threshold value of 0.95. Again,

there does not seem to be any evidence of a correspondence between the ad-

justable determinant value and the decision threshold for any member.

• The decision thresholds for the complementary data fusion phase of the exper-

iment were generally lower than those for both the �ngerprint recognition and

the keystroke dynamics phases. The average for the decision thresholds for

the complementary data fusion phase was 0.4012 with a standard deviation

of 0.35812801. These were both lower than those recorded for the �nger-

print recognition phase (with an average of 0.4506 and a standard deviation

of 0.37543667). The keystroke dynamics phase (with an average of 0.9486 and

a standard deviation of 0.03811958) had a much higher average for the deci-

sion thresholds than the complementary data fusion phase, but a much lower

standard deviation.

The individual training group members' results, demonstrated in Table 7.11,

indicate that all training group members achieved a FAR of 0.0. This meant that

no training group members had any impostor samples (out of 10,500) accepted as

their own. This was an excellent result, and re�ective of the AUC �gures presented

in Table 7.10.

Table 7.11 demonstrated that only one member registered a non-zero FRR; mem-

ber 23 with a rate of 0.02. This meant that member 23 had 2 of 100 genuine samples

incorrectly rejected. Recall that member 23 was the only member to register an AUC

value less than 1. As an area of 1 re�ects perfect recognition (at the nominated de-

cision threshold), the non-zero FRR for member 23 veri�es this less than perfect

performance.
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Participant True

Positive

Rate

False

Rejection

Rate

Number

of False

Rejections

False

Acceptance

Rate

Number

of False

Acceptances

1 1 0 0 0 0

2 1 0 0 0 0

3 1 0 0 0 0

5 1 0 0 0 0

7 1 0 0 0 0

9 1 0 0 0 0

12 1 0 0 0 0

14 1 0 0 0 0

16 1 0 0 0 0

18 1 0 0 0 0

20 1 0 0 0 0

21 1 0 0 0 0

23 0.98 0.02 2 0 0

24 1 0 0 0 0

25 1 0 0 0 0

27 1 0 0 0 0

29 1 0 0 0 0

32 1 0 0 0 0

34 1 0 0 0 0

36 1 0 0 0 0

38 1 0 0 0 0

40 1 0 0 0 0

41 1 0 0 0 0

43 1 0 0 0 0

45 1 0 0 0 0

46 1 0 0 0 0

47 1 0 0 0 0

49 1 0 0 0 0

52 1 0 0 0 0

54 1 0 0 0 0

56 1 0 0 0 0

58 1 0 0 0 0

60 1 0 0 0 0

61 1 0 0 0 0

63 1 0 0 0 0

65 1 0 0 0 0

67 1 0 0 0 0

68 1 0 0 0 0

69 1 0 0 0 0

72 1 0 0 0 0

74 1 0 0 0 0

76 1 0 0 0 0

78 1 0 0 0 0

80 1 0 0 0 0

81 1 0 0 0 0

83 1 0 0 0 0

85 1 0 0 0 0

87 1 0 0 0 0

89 1 0 0 0 0

90 1 0 0 0 0

Average 0.9996 0.0004 0.04 0 0

SD 0.002828 0.002828 � 0 �

Table 7.11: Duplication of Complementary Data Fusion Results

The last two rows of Table 7.11 provide the average and standard deviation FAR

and FRR �gures, for all training group members, for the complementary data fusion

phase of the experiment. The average FAR was 0.0 with a standard deviation of

0.0, and the average FRR was 0.0004 with a standard deviation of 0.002828. These

�gures demonstrated that the complementary data fusion phase of the experiment

performed exceptionally well.
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It meant that on average, there was a 4 in 10,000 chance that any of the 50

training group members would have one of their own genuine samples incorrectly

rejected. Also, there was no chance that any training group member would have an

impostor sample (out of 10,500) incorrectly accepted as their own.

Comparison with Reviewed Complementary Data Fusion Research

The average FAR and average FRR�for the 50 training group members�provide

�gures that permit a comparison with the results of the research e�orts reviewed

in Chapter 2 section 2.3.2.2, that utilised a complementary data fusion approach.

Though the research e�orts reviewed conducted experiments that varied in certain

aspects of data fusion (for example: the number of modalities, the level of fusion,

and the fusion method), it is still feasible to compare their results with those of the

current study, as in most cases the same performance variables (that is, FAR and

the FRR) were used18.

Table 7.12 provides a summary of the results achieved by the research e�orts

that utilised a complementary data fusion approach. The information in Table

7.12 is duplicated from Table 2.2 in Chapter 2 section 2.3.2.2, and is provided for

convenient comparison between the results of the reviewed research and the results

of the current study19.

Reviewed Paper Fusion Level FAR FRR

Jain et al., 1999 Decision 0.0001 0.14
Chatzis et al., 1999 Decision 0.0039 0.0
Ross et al., 2001 Con�dence Score 0.0003 0.0178
Wang et al., 2003 Con�dence Score 0.0 0.0
Nandakumar, 2008 Con�dence Score 0.0001 0.009
Current Study, 2010 Feature 0.0 0.0004

Table 7.12: Summary of Reviewed Papers Using The Complementary Data Fusion
Paradigm

18As noted in Chapter 2 section 2.3.2.2, numerous authors expressed the performance variables
as a percentage. That is, the percentage of the FAR and the percentage of the FRR. However in
Table 2.2 columns 7 and 8 (Chapter 2 section 2.3.2.2), the �gures for the performance variables are
denoted as their actual rates (i.e. the percentage rate divided by 100). Therefore, any discussion
comparing the performance variables will denote both the actual rate and the percentage rate (in
parentheses).

19Note that a direct comparison between the experimental results of the publications listed in
Table 7.12 (and also between them and the results of the current experiment) would be misleading.
All of these results can only be viewed as an informal indicator of algorithmic performance because
di�erent data sets were used in the experiments.
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Though not stated, the nature of the fusion method, employed by Jain et al.,

(1999a), indicates that the complementary data fusion approach was adopted20. In

the current study, two of the three possible fusion paradigms were investigated; the

complementary data fusion approach and the cooperative data fusion approach. In

this section, only the results of the complementary data fusion approach (achieved

in the current study) will be compared with the results achieved by Jain et al.,

(1999a).

Jain et al., (1999a) combined the data of three modalities at the decision level.

For this process, each matching module determined a con�dence score; these were

then passed to the corresponding decision modules, where individual accept/reject

decisions were made. The individual decisions were then passed to the fusion mod-

ule, where fusion was achieved using the joint class-conditional probability density

function. In the current study, feature level fusion was applied. The key di�erence

is that fusion at the feature level combines the richer feature data, whereas at the

decision level only accept/reject decisions are fused.

For their experiment, Jain et al., (1999a) recruited 50 participants to compile

a template database of 500 �ngerprint samples, 450 facial image samples, and 600

speech samples. They then had 25 of the original 50 participants provide 15 more

samples each (for each modality) to formulate a test database. Thus the test

database comprised 15 genuine samples to test false rejection of each of the 25

test participants, and 360 (24x15) impostor samples to test false acceptance.

In the current experiment, 90 participants were recruited (50 randomly assigned

to the training group and 40 to the non-training group) who each provided 140

samples for both modalities (keystroke samples and �ngerprint samples). Thus the

test database comprised 100 genuine samples to test false rejection of each of the 50

training group members, and 10,500 impostor samples to test false acceptance (for

each of the 50 training group members).

Jain et al., (1999a) presented their results using ROC graphs, from which the

best results (for the fusion of all three modalities) were derived; a FAR of 0.0001

20As all features were utilised in attaining the con�dence scores for each matching module, and
all local decisions (based on these scores) were then fused, complementary data fusion is implied.
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(0.01%) and a FRR of 0.14 (14%). The current experiment achieved a FAR of 0.0

and a FRR of 0.0004 (0.04%) for the complementary data fusion phase. The results

of the current study were therefore more accurate than those achieved by Jain et al.,

(1999a), and were achieved using a larger sample size, with more samples provided

by each participant.

Another experiment to perform data fusion at the decision level was conducted

by Chatzis et al., (1999). As explained in Chapter 2 section 2.3.2.2, the authors

applied fused data to six di�erent decision functions. The fused data was derived

from three biometric characteristics to form �ve modalities. Di�erent combinations

of the �ve modalities were applied to the six decision functions.

As with Jain et al., (1999a), a complementary data fusion approach is assumed

(though not speci�cally stated). In this section, only the results of the complemen-

tary data fusion approach (achieved in the current study) will be compared with the

results achieved by Chatzis et al., (1999).

For their experiment, Chatzis et al., (1999) used samples from 37 participants

from the �M2VTS multimedia face database�. The samples consisted of four speech

and image sequences (per participant) from video data, which thus provided 144

(4x36) impostor tests for each participant (an overall total of 5,328 impostor tests).

However, the small number of samples used meant that there were only 4 genuine

available to test false rejection. In the current experiment, 90 participants provided

140 samples for both modalities, which provided 10,500 impostor tests and 100

genuine tests for each training group member. This eventuated in an overall total

of 525,000 (10,500 for each of the 50 training group members) impostor tests and

5,000 (100 for each of the 50 training group members) genuine tests.

Results were reported for all �ve modalities applied to all six decision functions.

The best results were achieved when the morphological dynamic link architecture

(MDLA), pro�le shape matching (PSM), and maximum signal processing (MSP)

modalities were applied to the fuzzy data k-means (FDKM) decision function. For

this combination the experiment achieved a FAR of 0.0039 and a FRR of 0.0.
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The results of the current study (with a FAR of 0.0 and a FRR of 0.0004)

were more accurate (particular the FAR of 0.0 compared with 0.0039) than those

achieved by Chatzis et al., (1999), and were achieved using a larger sample size, with

more samples provided by each participant. With only 4 genuine samples to each

participant for false rejection, the FRR of 0.0 achieved by Chatzis et al., (1999) may

not have been attainable if more genuine samples had been available for testing.

Ross et al., (2001) experimented with con�dence score level data fusion. As

explained in Chapter 2 section 2.3.2.2, the authors combined three modalities: fa-

cial recognition, �ngerprint recognition, and hand geometry. Three fusion methods

were investigated: the sum rule, decision trees, and linear discriminant analysis.

In the current experiment, the feature vectors from two modalities were fused and

classi�cation was performed by ANNs.

Again, in the Ross et al., (2001) experiment a complementary data fusion ap-

proach is assumed (though not speci�cally stated). In this section, only the results

of the complementary data fusion approach (achieved in the current study) will be

compared with the results achieved by Ross et al., (2001).

For their experiment, Ross et al., (2001) recruited 50 participants, who provided

9 samples each for each of the modalities. Therefore, 450 genuine scores (true posi-

tives) and 22,050 impostor scores (false positives) could be generated. In the current

experiment, there were 100 genuine scores and 10,500 impostor scores generated for

each of the 50 training group members (an overall total of 5,000 genuine tests and

525,000 impostor tests).

The best results were achieved by Ross et al., (2001) when the simple Sum Rule

was employed to fuse the con�dence scores, with a FAR of 0.0003 (0.03%) and a

FRR of 0.0178 (1.78%). The results demonstrate similar accuracy to the previous

research e�orts, with a very good FAR and an acceptable FRR. The results of the

current study (with a FAR of 0.0 and a FRR of 0.0004) were more accurate than

those achieved by Ross et al., (2001), and were achieved with more samples provided

by each participant.
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Wang et al., (2003) combined the con�dence scores from two modalities: facial

recognition and iris recognition. Again a complementary data fusion approach was

assumed, as no feature selection was evident. The current study also utilised two

modalities, and investigated a complementary data fusion approach.

Five facial image samples and �ve iris image samples were attained from 90

participants. The current study also collected data from 90 participants, however

each participant provided 140 samples for both modalities.

Three methods were investigated to fuse and classify the data from both modal-

ities: the weighted sum rule, Fisher discriminant analysis, and radial based function

networks. Classi�cation in the current study was performed by ANNs only (speci�-

cally the multi-layer perceptron with back propagation).

Best results were achieved by Wang et al., (2003) using the radial based func-

tion network; perfect performance (that is, a FAR and FRR of 0.0) was achieved

at various threshold values. The results demonstrated that radial based function

networks perform admirably for fusion and classi�cation. The results of the current

study (with a FAR of 0.0 and a FRR of 0.0004) were as accurate for the FAR and

only marginally less accurate for the FRR.

Note that both experiments achieved their results with the same number of

participants, however the current experiment collected more samples from each par-

ticipant (140 compared to 5). Therefore, the Wang et al., (2003) methodology was

tested using only 5 genuine samples and 445 (89x5) impostor samples per partici-

pant. As such, some doubt remains as to whether similar results could be attained

if a larger number of samples were applied.

Nandakumar (2008) experimented with combining the con�dence scores from

two modalities. A complementary data fusion approach was assumed, as no fea-

ture selection was evident. For the experiment, two multi-modal databases which

provided con�dence or match scores were utilised. The NIST-BSSR1 multi-modal

database (Partition 1) provided two �ngerprint and two face scores from 517 partic-

ipants. Whilst tests were performed on other partitions of that database (and the

XM2VTS-Benchmark database), the tests for partition 1 returned the best results.
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Gaussian Mixture Models (GMM) were employed to estimate score densities,

and con�dence score level fusion was achieved using the complete likelihood ratio

test (CLRT). For the current experiment, these statistical techniques were not rel-

evant because feature level fusion, rather than con�dence score level fusion, was

investigated. The feature level fusion approach requires di�erent considerations (for

example, data alignment and feature selection).

Best results were achieved using the GMM and the complete likelihood ratio

fusion, tested on the NIST-BSSR1 multi-modal database (Partition 1); a FAR of

0.0001 (0.01%) and a FRR of 0.009 (0.9%). The results achieved by Nandakumar

(2008) were not as accurate as those achieved in the current study. However, the

Nandakumar (2008) results might still be considered well within acceptable require-

ments, depending on the nature of application (that is, mission critical or otherwise).

7.2.3.2 Summary of Complementary Data Fusion Results

The results of the current study, for the complementary data fusion phase of the

experiment, out-performed four of the �ve experiments discussed in the previous

section (with the exception being the Wang et al., (2003) experiment).

As demonstrated in Table 7.12, the �rst �ve research e�orts conducted data

fusion at either the decision level or the con�dence score (within the complementary

data fusion paradigm). The current study conducted data fusion at the feature level.

As discussed in Chapter 2 section 2.3.2.1, the level at which data fusion is per-

formed comes with speci�c requirements. Con�dence score level fusion requires the

combining of scalar values from di�erent modalities. At that level, raw and feature

data is not available. Therefore, classi�cation based on con�dence scores may not

always perform as expected because of the loss of discriminative information.

Feature level fusion requires combining features that are a low level represen-

tation of raw data. Fusion at this level encounters problems associated with the

unknown compatibility of features from di�erent sources, and the size of combined

feature vectors.
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As shown in Table 7.12 and the preceding discussion, there seems minimal dif-

ference between the accuracy achieved at the two data fusion levels (i.e. decision or

con�dence score). Aside from the obvious methodology di�erences (associated with

the fusion levels), one of the most glaring di�erences between the current study and

the other reviewed research e�orts was the smaller number of samples provided by

participants in the reviewed experiments; this would obviously result in a smaller

number of genuine and impostor tests. As a consequence, attributing a high level

of con�dence in the accuracy of the results achieved (in the reviewed experiments)

may be questionable.

The next section presents a discussion of results when the cooperative data fusion

approach was adopted.

7.2.3.3 Cooperative Data Fusion

In this section, a discussion is provided for the results of the cooperative data fusion

phase of the experiment (explained in Chapter 5 section 5.6.3). Recall that the co-

operative data fusion paradigm requires determination of the speci�c features (from

each of the data sources) that best represent a region or physical attributes/aspects

of an object. Thus this approach necessitates feature selection.

As discussed in Chapter 5 section 5.6.3.1, the feature selection process that was

adopted for the experiment resulted in four stages for this phase. These stages

related to the use of 40%, 50%, 60%, and 70% of the available metrics respectively.

The appropriate proportion of metrics were selected from all available metrics (i.e.

100%), as used in the complementary phase of the experiment.

For most participants, percentages above 70% and below 40% were not practi-

cable for the experiment because (according the proportion levels determined) their

were either not enough �ngerprint feature metrics available to meet the required

number of metrics, or the keystroke dynamic metrics were not represented at all.

Percentages rounded to 10% were used for ease of calculation.
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The �gures in Tables 7.13, 7.14, 7.15, 7.16, 7.17, 7.18, 7.19, and 7.20 are dis-

cussed in detail in the following sections. Then a comparison is provided between

the cooperative data fusion results achieved in the current study, and the results

achieved by the research e�orts discussed in Chapter 2 section 2.3.2.2. Note, only

those research e�orts that investigated the cooperative data fusion paradigm will be

discussed in this section.

Stage 1 (40%)

The statistics in Table 7.13 provide information regarding the calculation of the

decision threshold, for all 50 training group members, for stage 1 of the cooperative

data fusion phase of the experiment.

Figures in column 2 (the Area Under the ROC Curve) of Table 7.13 show that

47 of the 50 training group members achieved an area of 1. This was a very positive

result. Those members with AUC values less than 1 were 23, 25, and 87, with areas

of 0.99998095, 0.99995238, and 0.99995238 respectively.

Other points of interest in Table 7.13 are:

• The con�dence level for all 50 training group members was 0.5, which indicated

that no participant required an adjustment to their con�dence level because

of poor classi�er performance.

• Participant 46 had the highest decision threshold value of 0.98.

• The decision thresholds for the cooperative data fusion phase of the experiment

(at 40%) were generally similar to those for the complementary data fusion

phase. The average for the decision thresholds was 0.4234 with a standard

deviation of 0.34155473; the average was slightly higher, and the standard

deviation slightly lower, than those recorded for the complementary data fusion

phase.
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Participant Area Under

ROC Curve

True Positive

Mean

Con�dence

Level

Adjustable

Determinant

Value

Decision

Threshold

1 1 0.99991754 0.0500 0.94991754 0.78

2 1 0.99988399 0.0500 0.94988399 0.94

3 1 0.99436450 0.0500 0.94436450 0.04

5 1 0.99858813 0.0500 0.94858813 0.08

7 1 0.99995643 0.0500 0.94995643 0.27

9 1 0.99999629 0.0500 0.94999629 0.20

12 1 0.99997473 0.0500 0.94997473 0.18

14 1 0.99998118 0.0500 0.94998118 0.94

16 1 0.99956927 0.0500 0.94956927 0.03

18 1 0.99987230 0.0500 0.94987230 0.93

20 1 0.99997892 0.0500 0.94997892 0.43

21 1 0.99997063 0.0500 0.94997063 0.65

23 0.99998095 0.98141660 0.0500 0.93141659 0.77

24 1 0.99906967 0.0500 0.94906967 0.40

25 0.99995238 0.99994703 0.0500 0.94994703 0.80

27 1 0.99996674 0.0500 0.94996674 0.72

29 1 0.99999984 0.0500 0.94999984 0.48

32 1 0.99990204 0.0500 0.94990204 0.07

34 1 0.99987635 0.0500 0.94987635 0.42

36 1 0.99997806 0.0500 0.94997806 0.51

38 1 0.99997937 0.0500 0.94997937 0.90

40 1 0.99996609 0.0500 0.94996609 0.11

41 1 0.99990079 0.0500 0.94990079 0.03

43 1 0.99994124 0.0500 0.94994124 0.05

45 1 0.99991208 0.0500 0.94991207 0.29

46 1 0.99998315 0.0500 0.94998315 0.98

47 1 0.99996134 0.0500 0.94996134 0.50

49 1 0.99992628 0.0500 0.94992628 0.87

52 1 0.99993853 0.0500 0.94993853 0.92

54 1 0.99996554 0.0500 0.94996554 0.04

56 1 0.99995322 0.0500 0.94995322 0.57

58 1 0.99993582 0.0500 0.94993582 0.94

60 1 0.99997868 0.0500 0.94997868 0.31

61 1 0.99996597 0.0500 0.94996597 0.02

63 1 0.99994824 0.0500 0.94994824 0.86

65 1 0.99996813 0.0500 0.94996813 0.07

67 1 0.99995870 0.0500 0.94995870 0.11

68 1 0.99996510 0.0500 0.94996510 0.95

69 1 0.99996257 0.0500 0.94996257 0.01

72 1 0.99997178 0.0500 0.94997178 0.02

74 1 0.99398993 0.0500 0.94398993 0.74

76 1 0.99813954 0.0500 0.94813954 0.18

78 1 0.99997119 0.0500 0.94997119 0.61

80 1 0.97866954 0.0500 0.92866954 0.29

81 1 0.95296646 0.0500 0.90296646 0.21

83 1 0.99994713 0.0500 0.94994713 0.25

85 1 0.99992489 0.0500 0.94992489 0.03

87 0.99995238 0.99996281 0.0500 0.94996281 0.49

89 1 0.99997073 0.0500 0.94997073 0.04

90 1 0.99238965 0.0500 0.94238965 0.14

Average 0.99999867 0.99774449 � 0.94774449 0.4234

SD 0.00000973 0.00768056 � 0.00768056 0.34155473

Table 7.13: Duplication of Cooperative Data Fusion (Stage 1 � 40%) Statistics for
Threshold Calculation



7.2. DISCUSSION 417

Participant True

Positive

Rate

False

Rejection

Rate

Number

of False

Rejections

False

Acceptance

Rate

Number

of False

Acceptances

1 1 0 0 0 0

2 1 0 0 0 0

3 1 0 0 0 0

5 1 0 0 0 0

7 1 0 0 0 0

9 1 0 0 0 0

12 1 0 0 0 0

14 1 0 0 0 0

16 1 0 0 0 0

18 1 0 0 0 0

20 1 0 0 0 0

21 1 0 0 0 0

23 0.98 0.02 2 0 0

24 1 0 0 0 0

25 1 0 0 0.00009524 1

27 1 0 0 0 0

29 1 0 0 0 0

32 1 0 0 0 0

34 1 0 0 0 0

36 1 0 0 0 0

38 1 0 0 0 0

40 1 0 0 0 0

41 1 0 0 0 0

43 1 0 0 0 0

45 1 0 0 0 0

46 1 0 0 0 0

47 1 0 0 0 0

49 1 0 0 0 0

52 1 0 0 0 0

54 1 0 0 0 0

56 1 0 0 0 0

58 1 0 0 0 0

60 1 0 0 0 0

61 1 0 0 0 0

63 1 0 0 0 0

65 1 0 0 0 0

67 1 0 0 0 0

68 1 0 0 0 0

69 1 0 0 0 0

72 1 0 0 0 0

74 1 0 0 0 0

76 1 0 0 0 0

78 1 0 0 0 0

80 1 0 0 0 0

81 1 0 0 0 0

83 1 0 0 0 0

85 1 0 0 0 0

87 1 0 0 0.00009524 1

89 1 0 0 0 0

90 1 0 0 0 0

Average 0.9996 0.0004 0.04 0.00000381 0.04

SD 0.002828 0.002828 � 0.00001885 �

Table 7.14: Duplication of Cooperative Data Fusion (Stage 1 � 40%) Results

The individual training group members' results, demonstrated in Table 7.14, in-

dicate that 48 of the 50 training group members achieved a FAR of 0.0. That is, 48

training group members had no impostor samples (out of 10,500) accepted as their

own. This was a very good result, and re�ective of the AUC �gures presented in

Table 7.13.
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The two training group members to register a non-zero FAR were 25 and 87;

both achieved a FAR of 0.00009524. This meant that members 25 and 87 had 1

impostor sample each (out of 10,500) incorrectly accepted as their own.

Table 7.14 also showed that only member 23 registered a non-zero FRR of 0.02.

This meant that member 23 had 2 of 100 genuine samples incorrectly rejected. Note

that members 23, 25 and 87 were the only members to register AUC values less than

1. As an area of 1 re�ects perfect recognition (at the nominated decision threshold),

the non-zero FAR and FRR scores for these members veri�es the less than perfect

performance.

The last two rows of Table 7.14 provide the average and standard deviation FAR

and FRR �gures, for all training group members, for the cooperative data fusion

phase of the experiment (at 40%). The average FAR was 0.00000381 with a standard

deviation of 0.00001885, and the average FRR was 0.0004 with a standard deviation

of 0.002828. These �gures demonstrated that the cooperative data fusion phase of

the experiment (at 40%) performed very well.

It meant that on average, there was a 4 in 10,000 chance that any of the 50

training group members would have one of their own genuine samples incorrectly

rejected. Also, there was approximately a 4 in 1,000,000 chance that any of the

50 training group members would have an impostor sample incorrectly accepted as

their own.

Stage 2 (50%)

The statistics in Table 7.15 provide information regarding the calculation of the

decision threshold, for all 50 training group members, for stage 2 of the cooperative

data fusion phase of the experiment.

Figures in column 2 (the Area Under the ROC Curve) of Table 7.15 show that

49 of the 50 training group members achieved an area of 1. This was an extremely

positive result. The member with an area less than 1 was member 81 with an area

of 0.99999714.
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Participant Area Under

ROC Curve

True Positive

Mean

Con�dence

Level

Adjustable

Determinant

Value

Decision

Threshold

1 1 0.99995281 0.0500 0.94995281 0.82

2 1 0.99993966 0.0500 0.94993966 0.88

3 1 0.99786012 0.0500 0.94786012 0.70

5 1 0.99999326 0.0500 0.94999326 0.67

7 1 0.99988564 0.0500 0.94988564 0.15

9 1 0.99997344 0.0500 0.94997344 0.09

12 1 0.99999695 0.0500 0.94999695 0.28

14 1 0.99998740 0.0500 0.94998740 0.96

16 1 0.99978117 0.0500 0.94978117 0.11

18 1 0.99990018 0.0500 0.94990018 0.95

20 1 0.99991915 0.0500 0.94991915 0.95

21 1 0.99998011 0.0500 0.94998011 0.24

23 1 0.99796202 0.0500 0.94796202 0.93

24 1 0.99897221 0.0500 0.94897221 0.02

25 1 0.99994968 0.0500 0.94994968 0.98

27 1 0.99993967 0.0500 0.94993967 0.68

29 1 0.99997148 0.0500 0.94997148 0.03

32 1 0.99991157 0.0500 0.94991157 0.06

34 1 0.99991700 0.0500 0.94991700 0.64

36 1 0.99997909 0.0500 0.94997909 0.47

38 1 0.99986791 0.0500 0.94986791 0.87

40 1 0.99998716 0.0500 0.94998716 0.08

41 1 0.99993588 0.0500 0.94993588 0.02

43 1 0.99995880 0.0500 0.94995880 0.06

45 1 0.99993733 0.0500 0.94993733 0.19

46 1 0.99997161 0.0500 0.94997161 0.93

47 1 0.99989028 0.0500 0.94989028 0.12

49 1 0.99994911 0.0500 0.94994911 0.88

52 1 0.99993010 0.0500 0.94993010 0.93

54 1 0.99997683 0.0500 0.94997683 0.04

56 1 0.99995208 0.0500 0.94995208 0.79

58 1 0.99990854 0.0500 0.94990854 0.85

60 1 0.99997807 0.0500 0.94997807 0.15

61 1 0.99996351 0.0500 0.94996351 0.03

63 1 0.9999384 0.0500 0.9499384 0.66

65 1 0.99997876 0.0500 0.94997876 0.14

67 1 0.99993852 0.0500 0.94993852 0.09

68 1 0.99996217 0.0500 0.94996216 0.95

69 1 0.99994770 0.0500 0.94994770 0.03

72 1 0.99996497 0.0500 0.94996497 0.02

74 1 0.99671857 0.0500 0.94671857 0.82

76 1 0.99903137 0.0500 0.94903136 0.26

78 1 0.99999157 0.0500 0.94999157 0.20

80 1 0.99675004 0.0500 0.94675004 0.05

81 0.99999714 0.99820160 0.0500 0.94820160 0.98

83 1 0.99995360 0.0500 0.94995360 0.14

85 1 0.99996115 0.0500 0.94996115 0.12

87 1 0.99998683 0.0500 0.94998683 0.92

89 1 0.99996138 0.0500 0.94996138 0.04

90 1 0.99462889 0.0500 0.94462889 0.13

Average 0.99999994 0.99955791 � 0.94955791 0.442

SD 0.00000040 0.00105515 � 0.00105515 38194988

Table 7.15: Duplication of Cooperative Data Fusion (Stage 2 � 50%) Statistics for
Threshold Calculation

Other points of interest in Table 7.15 are:

• The con�dence level for all 50 training group members was 0.5, which indicated

that no participant required an adjustment to their con�dence level because

of poor classi�er performance.

• Participants 25 and 81 had the highest decision threshold value of 0.98.
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• The decision thresholds for the cooperative data fusion phase of the experiment

(at 50%) were generally similar to those for the complementary data fusion

phase. The average for the decision thresholds was 0.442 with a standard

deviation of 0.38194988; the average, and the standard deviation, were slightly

higher than those recorded for the complementary data fusion phase.

Participant True

Positive

Rate

False

Rejection

Rate

Number

of False

Rejections

False

Acceptance

Rate

Number

of False

Acceptances

1 1 0 0 0 0

2 1 0 0 0 0

3 1 0 0 0 0

5 1 0 0 0 0

7 1 0 0 0 0

9 1 0 0 0 0

12 1 0 0 0 0

14 1 0 0 0 0

16 1 0 0 0 0

18 1 0 0 0 0

20 1 0 0 0 0

21 1 0 0 0 0

23 1 0 0 0 0

24 1 0 0 0 0

25 1 0 0 0 0

27 1 0 0 0 0

29 1 0 0 0 0

32 1 0 0 0 0

34 1 0 0 0 0

36 1 0 0 0 0

38 1 0 0 0 0

40 1 0 0 0 0

41 1 0 0 0 0

43 1 0 0 0 0

45 1 0 0 0 0

46 1 0 0 0 0

47 1 0 0 0 0

49 1 0 0 0 0

52 1 0 0 0 0

54 1 0 0 0 0

56 1 0 0 0 0

58 1 0 0 0 0

60 1 0 0 0 0

61 1 0 0 0 0

63 1 0 0 0 0

65 1 0 0 0 0

67 1 0 0 0 0

68 1 0 0 0 0

69 1 0 0 0 0

72 1 0 0 0 0

74 1 0 0 0 0

76 1 0 0 0 0

78 1 0 0 0 0

80 1 0 0 0 0

81 0.97 0.03 3 0 0

83 1 0 0 0 0

85 1 0 0 0 0

87 1 0 0 0 0

89 1 0 0 0 0

90 1 0 0 0 0

Average 0.9994 0.0006 0.06 0 0

SD 0.004243 0.004243 � 0 �

Table 7.16: Duplication of Cooperative Data Fusion (Stage 2 � 50%) Results
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The individual training group members' results, demonstrated in Table 7.16

indicate that all 50 training group members achieved a FAR of 0.0. This meant

that no training group member had any impostor samples (out of 10,500) accepted

as their own. Again, this was an excellent result and re�ective of the AUC �gures

presented in Table 7.15.

Table 7.16 also showed that only training group member 81 registered a non-

zero FRR of 0.03. This meant that member 81 had 3 out of 100 genuine samples

incorrectly rejected. Note that member 81 was the only member to register an AUC

value less than 1. As an area of 1 re�ects perfect recognition at the nominated

decision threshold, the non-zero FRR for member 81 veri�es this less than perfect

performance.

The last two rows of Table 7.16 provide the average and standard deviation

FAR and FRR �gures, for all training group members, for the cooperative data

fusion phase of the experiment (at 50%). The average FAR was 0.0 with a standard

deviation of 0.0, and the average FRR was 0.0006 with a standard deviation of

0.004243. These �gures demonstrated that the cooperative data fusion phase of the

experiment (at 50%) performed extremely well.

It meant that on average, there was a 6 in 10,000 chance that any of the 50

training group members would have one of their own genuine samples incorrectly

rejected. Also, there was no chance that any training group member would have an

impostor sample (out of 10,500) incorrectly accepted as their own.

Stage 3 (60%)

The statistics in Table 7.17 provide information regarding the calculation of the

decision threshold, for all 50 training group members, for stage 3 of the cooperative

data fusion phase of the experiment.

Figures in column 2 (the Area Under the ROC Curve) of Table 7.17 show that

49 of the 50 training group members achieved an area of 1. This is an extremely

positive result. The member with an area less than 1 was member 23 with an AUC

of 0.99998571.
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Participant Area Under

ROC Curve

True Positive

Mean

Con�dence

Level

Adjustable

Determinant

Value

Decision

Threshold

1 1 0.99992793 0.0500 0.94992793 0.85

2 1 0.99996556 0.0500 0.94996556 0.89

3 1 0.99843240 0.0500 0.94843240 0.38

5 1 0.98928223 0.0500 0.93928223 0.03

7 1 0.99998868 0.0500 0.94998868 0.16

9 1 0.99996960 0.0500 0.94996960 0.10

12 1 0.99998107 0.0500 0.94998107 0.18

14 1 0.99982194 0.0500 0.94982194 0.69

16 1 0.99985554 0.0500 0.94985554 0.58

18 1 0.99995425 0.0500 0.94995425 0.93

20 1 0.99992648 0.0500 0.94992648 0.94

21 1 0.99993923 0.0500 0.94993923 0.20

23 0.99998571 0.99222820 0.0500 0.94222819 0.95

24 1 0.99828443 0.0500 0.94828443 0.25

25 1 0.99990365 0.0500 0.94990365 0.92

27 1 0.99993836 0.0500 0.94993836 0.81

29 1 0.99996302 0.0500 0.94996302 0.03

32 1 0.99990327 0.0500 0.94990327 0.03

34 1 0.99985921 0.0500 0.94985921 0.73

36 1 0.99995089 0.0500 0.94995089 0.64

38 1 0.99764964 0.0500 0.94764963 0.13

40 1 0.99994105 0.0500 0.94994104 0.20

41 1 0.99992359 0.0500 0.94992359 0.03

43 1 0.99995974 0.0500 0.94995974 0.05

45 1 0.99993968 0.0500 0.94993968 0.04

46 1 0.99997368 0.0500 0.94997368 0.90

47 1 0.99993063 0.0500 0.94993063 0.15

49 1 0.99995690 0.0500 0.94995690 0.90

52 1 0.99995330 0.0500 0.94995330 0.92

54 1 0.99995585 0.0500 0.94995585 0.07

56 1 0.99995054 0.0500 0.94995054 0.80

58 1 0.99994746 0.0500 0.94994746 0.95

60 1 0.99998110 0.0500 0.94998110 0.15

61 1 0.99994356 0.0500 0.94994356 0.02

63 1 0.99995022 0.0500 0.94995022 0.90

65 1 0.99995826 0.0500 0.94995826 0.12

67 1 0.99997349 0.0500 0.94997349 0.22

68 1 0.99994444 0.0500 0.94994444 0.95

69 1 0.99998234 0.0500 0.94998234 0.01

72 1 0.99996257 0.0500 0.94996257 0.02

74 1 0.99440462 0.0500 0.94440462 0.57

76 1 0.99914280 0.0500 0.94914280 0.64

78 1 0.99997657 0.0500 0.94997657 0.73

80 1 0.99899996 0.0500 0.94899996 0.03

81 1 0.98798671 0.0500 0.93798671 0.77

83 1 0.99985162 0.0500 0.94985162 0.59

85 1 0.99998320 0.0500 0.94998320 0.25

87 1 0.99995217 0.0500 0.94995217 0.80

89 1 0.99995057 0.0500 0.94995057 0.04

90 1 0.9947447 0.0500 0.94474474 0.09

Average 0.99999971 0.99897694 � 0.94897694 0.4466

SD 0.00000202 0.00263041 � 0.00263041 0.36663172

Table 7.17: Duplication of Cooperative Data Fusion (Stage 3 � 60%) Statistics for
Threshold Calculation

Other points of interest in Table 7.17 are:

• The con�dence level for all 50 training group members was 0.5, which indicated

that no participant required an adjustment to their con�dence level because

of poor classi�er performance.
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• Participant 23 had the highest decision threshold value of 0.95 (shared with

participants 58 and 68).

• The decision thresholds for the cooperative data fusion phase of the experiment

(at 60%) were generally similar to those for the complementary data fusion

phase. The average for the decision thresholds was 0.4466 with a standard

deviation of 0.36663172; the average, and the standard deviation, was slightly

higher than those recorded for the complementary data fusion phase.

The individual training group members' results, demonstrated in Table 7.18

indicate that all 50 training group members achieved a FAR of 0.0. This meant

that all training group members had no impostor samples (out of 10,500) accepted

as their own. Again, this is an excellent result and re�ective of the AUC �gures

presented in Table 7.17.

Table 7.18 also showed that only one training group member registered a non-

zero FRR; member 23 with a rate of 0.05. This meant that member 23 had 5 out of

100 genuine samples incorrectly rejected. Note that member 23 was the only member

to register an AUC value less than 1. As an area of 1 re�ects perfect recognition at

the nominated decision threshold, the non-zero FRR for member 23 veri�es this less

than perfect performance.

The last two rows of Table 7.18 provide the average and standard deviation FAR

and FRR �gures, for all training group members, for the cooperative data fusion

phase of the experiment (at 60%). The average FAR was 0.0 with a standard devi-

ation of 0.0, and the average FRR was 0.001 with a standard deviation of 0.007071.

These �gures demonstrated that the cooperative data fusion phase of the experiment

(at 60%) performed extremely well.

It meant that on average, there was a 1 in 1,000 chance that any of the 50

training group members would have one of their own genuine samples incorrectly

rejected. Also, there was no chance that any training group member would have an

impostor sample (out of 10,500) incorrectly accepted as their own.
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Participant True

Positive

Rate

False

Rejection

Rate

Number

of False

Rejections

False

Acceptance

Rate

Number

of False

Acceptances

1 1 0 0 0 0

2 1 0 0 0 0

3 1 0 0 0 0

5 1 0 0 0 0

7 1 0 0 0 0

9 1 0 0 0 0

12 1 0 0 0 0

14 1 0 0 0 0

16 1 0 0 0 0

18 1 0 0 0 0

20 1 0 0 0 0

21 1 0 0 0 0

23 0.95 0.05 5 0 0

24 1 0 0 0 0

25 1 0 0 0 0

27 1 0 0 0 0

29 1 0 0 0 0

32 1 0 0 0 0

34 1 0 0 0 0

36 1 0 0 0 0

38 1 0 0 0 0

40 1 0 0 0 0

41 1 0 0 0 0

43 1 0 0 0 0

45 1 0 0 0 0

46 1 0 0 0 0

47 1 0 0 0 0

49 1 0 0 0 0

52 1 0 0 0 0

54 1 0 0 0 0

56 1 0 0 0 0

58 1 0 0 0 0

60 1 0 0 0 0

61 1 0 0 0 0

63 1 0 0 0 0

65 1 0 0 0 0

67 1 0 0 0 0

68 1 0 0 0 0

69 1 0 0 0 0

72 1 0 0 0 0

74 1 0 0 0 0

76 1 0 0 0 0

78 1 0 0 0 0

80 1 0 0 0 0

81 1 0 0 0 0

83 1 0 0 0 0

85 1 0 0 0 0

87 1 0 0 0 0

89 1 0 0 0 0

90 1 0 0 0 0

Average 0.9990 0.0010 0.1 0 0

SD 0.007071 0.007071 � 0 �

Table 7.18: Duplication of Cooperative Data Fusion (Stage 3 � 60%) Results

Stage 4 (70%)

The statistics in Table 7.19 provide information regarding the calculation of the

decision threshold, for all 50 training group members, for stage 4 of the cooperative

data fusion phase of the experiment.
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Participant Area Under

ROC Curve

True Positive

Mean

Con�dence

Level

Adjustable

Determinant

Value

Decision

Threshold

1 1 0.99991163 0.0500 0.94991163 0.67

2 1 0.99995292 0.0500 0.94995292 0.93

3 1 0.99709036 0.0500 0.94709036 0.41

5 1 0.98615842 0.0500 0.93615841 0.10

7 1 0.99997614 0.0500 0.94997614 0.44

9 1 0.99997112 0.0500 0.94997112 0.25

12 1 0.99995742 0.0500 0.94995742 0.24

14 1 0.99979208 0.0500 0.94979208 0.51

16 1 0.99988488 0.0500 0.94988488 0.35

18 1 0.99996285 0.0500 0.94996285 0.94

20 1 0.99995091 0.0500 0.94995091 0.95

21 1 0.99996662 0.0500 0.94996662 0.47

23 0.99998238 0.99344748 0.0500 0.94344748 0.95

24 1 0.99873973 0.0500 0.94873973 0.71

25 1 0.99987783 0.0500 0.94987783 0.95

27 1 0.99989272 0.0500 0.94989272 0.76

29 1 0.99997935 0.0500 0.94997935 0.03

32 1 0.99995041 0.0500 0.94995041 0.03

34 1 0.99988808 0.0500 0.94988808 0.68

36 1 0.99998034 0.0500 0.94998034 0.70

38 1 0.99767674 0.0500 0.94767674 0.14

40 1 0.99997277 0.0500 0.94997277 0.25

41 1 0.99994357 0.0500 0.94994357 0.19

43 1 0.99992265 0.0500 0.94992265 0.02

45 1 0.99992186 0.0500 0.94992186 0.03

46 1 0.99994753 0.0500 0.94994753 0.84

47 1 0.99987963 0.0500 0.94987963 0.14

49 1 0.99989966 0.0500 0.94989966 0.95

52 1 0.99990184 0.0500 0.94990184 0.99

54 1 0.99998099 0.0500 0.94998099 0.15

56 1 0.99989832 0.0500 0.94989831 0.52

58 1 0.99987557 0.0500 0.94987557 0.95

60 1 0.99997128 0.0500 0.94997128 0.17

61 1 0.99981937 0.0500 0.94981937 0.02

63 1 0.99997335 0.0500 0.94997335 0.91

65 1 0.99994637 0.0500 0.94994637 0.09

67 1 0.99993493 0.0500 0.94993493 0.20

68 1 0.99996165 0.0500 0.94996165 0.90

69 1 0.99992784 0.0500 0.94992784 0.04

72 1 0.99993243 0.0500 0.94993243 0.03

74 1 0.99493857 0.0500 0.94493857 0.82

76 1 0.99817754 0.0500 0.94817754 0.17

78 1 0.99995635 0.0500 0.94995635 0.64

80 1 0.99315162 0.0500 0.94315162 0.14

81 1 0.95857320 0.0500 0.90857320 0.47

83 1 0.99985074 0.0500 0.94985074 0.50

85 1 0.99995945 0.0500 0.94995945 0.01

87 1 0.99992721 0.0500 0.94992721 0.92

89 1 0.99996624 0.0500 0.94996624 0.03

90 1 0.99305809 0.0500 0.94305809 0.03

Average 0.99999965 0.99816357 � 0.94816357 0.4466

SD 0.00000249 0.00626269 � 0.00626269 0.35438714

Table 7.19: Duplication of Cooperative Data Fusion (Stage 4 � 70%) Statistics for
Threshold Calculation

Figures in column 2 (the Area Under the ROC Curve) of Table 7.19 show that

49 of the 50 training group members achieved an area of 1. This is an extremely

positive result. The member with an area less than 1 was member 23 with an AUC

of 0.99998238.
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Other points of interest in Table 7.17 are:

• The con�dence level for all 50 training group members was 0.5, which indicated

that no participant required an adjustment to their con�dence level because

of poor classi�er performance.

• Participant 23 had the second highest decision threshold value of 0.95 (shared

with participants 20, 25, 49, 58).

• The decision thresholds for the cooperative data fusion phase of the experiment

(at 70%) were generally similar to those for the complementary data fusion

phase. The average for the decision thresholds was 0.4466 with a standard

deviation of 0.35438714; the average was slightly higher, and the standard

deviation slightly lower, than those recorded for the complementary data fusion

phase.

The individual training group members' results, demonstrated in Table 7.20

indicate that all 50 training group members achieved a FAR of 0.0. This meant

that all training group members had no impostor samples (out of 10,500) accepted

as their own. Again, this is an excellent result and re�ective of the AUC �gures

presented in Table 7.19.

Table 7.20 also showed that only one training group member registered a non-

zero FRR; member 23 with a rate of 0.05. This meant that member 23 had 5 out of

100 samples genuine incorrectly rejected. Note that member 23 was the only member

to register an AUC value less than 1. As an area of 1 re�ects perfect recognition at

the nominated decision threshold, the non-zero FRR for member 23 veri�es this less

than perfect performance.

The last two rows of Table 7.20 provide the average and standard deviation

FAR and FRR �gures, for all participants, for the cooperative data fusion phase of

the experiment (at 70%). The average FAR was 0.0 with a standard deviation of

0.0, and the average FRR was 0.001 with a standard deviation of 0.007071. These

�gures demonstrated that the cooperative data fusion phase of the experiment (at

70%) performed extremely well.
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Participant True

Positive

Rate

False

Rejection

Rate

Number

of False

Rejections

False

Acceptance

Rate

Number

of False

Acceptances

1 1 0 0 0 0

2 1 0 0 0 0

3 1 0 0 0 0

5 1 0 0 0 0

7 1 0 0 0 0

9 1 0 0 0 0

12 1 0 0 0 0

14 1 0 0 0 0

16 1 0 0 0 0

18 1 0 0 0 0

20 1 0 0 0 0

21 1 0 0 0 0

23 0.95 0.05 5 0 0

24 1 0 0 0 0

25 1 0 0 0 0

27 1 0 0 0 0

29 1 0 0 0 0

32 1 0 0 0 0

34 1 0 0 0 0

36 1 0 0 0 0

38 1 0 0 0 0

40 1 0 0 0 0

41 1 0 0 0 0

43 1 0 0 0 0

45 1 0 0 0 0

46 1 0 0 0 0

47 1 0 0 0 0

49 1 0 0 0 0

52 1 0 0 0 0

54 1 0 0 0 0

56 1 0 0 0 0

58 1 0 0 0 0

60 1 0 0 0 0

61 1 0 0 0 0

63 1 0 0 0 0

65 1 0 0 0 0

67 1 0 0 0 0

68 1 0 0 0 0

69 1 0 0 0 0

72 1 0 0 0 0

74 1 0 0 0 0

76 1 0 0 0 0

78 1 0 0 0 0

80 1 0 0 0 0

81 1 0 0 0 0

83 1 0 0 0 0

85 1 0 0 0 0

87 1 0 0 0 0

89 1 0 0 0 0

90 1 0 0 0 0

Average 0.9990 0.0010 0.1 0 0

SD 0.007071 0.007071 � 0 �

Table 7.20: Duplication of Cooperative Data Fusion (Stage 4 � 70%) Results

It meant that on average, there was a 1 in 1,000 chance that any of the 50

training group members would have one of their own genuine samples incorrectly

rejected. Also, there was no chance that any training group member would have an

impostor sample (out of 10,500) incorrectly accepted as their own.
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As demonstrated in Tables 7.14, 7.16, 7.18, and 7.20, the cooperative data fusion

results for all stages performed extremely well. The only stage to register a non-zero

average FAR was stage 1, where 40% of the available data was fused. For that stage,

an average FAR of 0.0004 resulted. In attaining that average FAR, only 2 training

group members had 1 impostor sample (out of 10,500) incorrectly accepted as their

own; all other members achieved a FAR of 0.0. The other three stages for this phase

of the experiment achieved a average FAR of 0.0.

Stage 2 performed the best of the 4 stages, with an average FAR of 0.0 and an

average FRR of 0.0006. In attaining that average FRR, only 1 training group mem-

ber had 3 of 100 genuine samples incorrectly rejected; all other members achieved a

FRR of 0.0. Stages 3 and 4 also performed very well, with an average FAR of 0.0

and an average FRR of 0.001. In both stages, only 1 training group member had 5

of 100 genuine samples incorrectly rejected.

Comparison with Reviewed Cooperative Data Fusion Research

The average FAR and average FRR�for the 50 training group members�provide

�gures that permit a comparison with the results of the research e�orts reviewed in

Chapter 2 section 2.3.2.2, that utilised a cooperative data fusion approach. Though

the research e�orts reviewed conducted experiments that varied in certain aspects

of data fusion (for example: the number of modalities and the fusion method), it

is still feasible to compare their results with those of the current study, as in most

cases the same performance variables (that is, FAR and the FRR) were used21.

Table 7.21 provides a summary of the results achieved by research e�orts that

utilised a cooperative data fusion approach. The information in Table 7.21 is du-

plicated from Table 2.2 in Chapter 2 section 2.3.2.2, and is provided for convenient

comparison between the results of the reviewed research and the results of the cur-

rent study22.

21As noted in Chapter 2 section 2.3.2.2, numerous authors expressed the performance variables
as a percentage. That is, the percentage of the FAR and the percentage of the FRR. However in
Table 2.2 columns 7 and 8 (Chapter 2 section 2.3.2.2), the �gures for the performance variables are
denoted as their actual rates (i.e. the percentage rate divided by 100). Any discussion comparing
the performance variables will denote both the actual rate and the percentage rate (in parentheses).

22Note that a direct comparison between the experimental results of the publications listed in
Table 7.21 (and also between them and the results of the current experiment) would be misleading.
All of these results can only be viewed as an informal indicator of algorithmic performance because
di�erent data sets were used in the experiments.
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Reviewed Paper Fusion Level FAR FRR

Son and Lee, 2005 Feature 0.0 0.0
Ross and Govindarajan, 2005 Feature 0.0001 0.13
Rattani et al., 2007 Feature 0.0102 0.0195
Yao et al., 2007 Feature na na
Current Study, 2010 Stage 1 Feature 0.00000381 0.0004

Stage 2 Feature 0.0 0.0006
Stage 3 Feature 0.0 0.001
Stage 4 Feature 0.0 0.001

Table 7.21: Summary of Reviewed Papers Using The Cooperative Data Fusion
Paradigm

Like the current experiment, Son and Lee (2005) used two modalities. For their

experiment, the authors used facial and iris recognition fused at the feature level.

The Son and Lee (2005) experiment utilised 10 facial image samples each from 140

individuals and 10 iris scan image samples each from 200 individuals (eventuating in

1,000 high quality images and 1,000 low quality images). In the current experiment,

140 typing samples and 140 �ngerprint samples from 90 participants were used.

In Chapter 2 section 2.3.2.2 it was explained that the Son and Lee (2005) adopted

a statistical approach to reduce the dimensionality of the combined feature vector.

The speci�c technique employed was Direct Linear Discriminant Analysis (DLDA),

which utilises Principle Component Analysis (PCA) to help reduce dimensionality.

These techniques not only reduced dimensionality, but in the process performed

feature selection. The result was a `Reduced Joint Feature Vector' (RJFV). The

authors provided no information in regard to the proportion of features from each

of the modalities that constituted the combined feature vector.

The above method of feature selection di�ered from that performed in the current

study. For the current experiment, the weights from trained ANNs (a by-product

of the complementary phase of the experiment) were available, and a method that

e�ectively utilised these weights (to select relevant features) was sought and imple-

mented (described in Chapter 5 section 5.6.3.1).

The best results achieved in the Son and Lee (2005) experiment were a FAR

of 0.0 and FRR of 0.0. These are outstanding results (with perfect recognition for

both performance variables), and occurred when high quality iris scan image features
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were combined with the facial image features. The best results in the current study

(employing cooperative data fusion) were achieved in Stage 2 with a FAR of 0.0 and

a FRR of 0.0006. These results are comparable to the Son and Lee (2005) results.

Like the current study and the Son and Lee (2005) experiment, Ross and Govin-

darajan (2005) also experimented with two modalities. For their experiment, the

authors used facial images and hand geometry fused at the feature level. The Ross

and Govindarajan (2005) experiment used 5 facial image samples and 5 hand ge-

ometry samples collected from 100 participants. For the current experiment, 140

typing samples and 140 �ngerprint samples from 90 participants were used.

Features were extracted (using Principle Component Analysis and Linear Dis-

criminant Analysis) from a facial image to return a vector of 27 elements. Hand

geometry features consisted of physical measurements. Normalisation (or data align-

ment) was conducted so that their respective components could equally contribute

to the matching process.

As feature selection was evident (to reduce the dimensionality of combined fea-

ture vectors), the paradigm can be designated as a cooperative data fusion approach.

The sequential forward �oating selection technique was adopted. This method of fea-

ture selection di�ered from the method in the current study, which used the weights

from trained ANNs (available from the complementary phase of the experiment) for

this purpose.

Also, the fusion method used by Ross and Govindarajan (2005) di�ered from

that used in the current study. Ross and Govindarajan (2005) used various distance

measures applied to the available feature data, to calculate con�dence or match

scores; the match scores were then combined. Final classi�cation was based on the

combined match score.

Even though the match scores were determined (at various stages of calculation)

according to combined feature vectors, the methodology has a strong resemblance to

con�dence level fusion. As stated in Chapter 2 section 2.3.2.2, data fusion appears

to have been performed as a combination of feature level and con�dence score level

fusion.
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The best results achieved in the Ross and Govindarajan (2005) experiment were

a FAR of approximately 0.0001 (0.01%) and a FRR of approximately 0.13 (13%).

The FAR result was very good, however the FRR was not as good. The results of

the current study were more accurate for both performance variables, and had more

samples for performing genuine and impostor tests.

Rattani et al., (2007) also experimented with two modalities: facial recognition

and �ngerprint recognition. During feature extraction, a descriptor was determined

for each feature from both modalities. Thus each feature was represented by spatial

coordinates, orientation, and a descriptor.

Fusion was conducted at the feature level, by concatenating feature vectors from

the two modalities. This is the simplest method of feature level fusion, but has the

side e�ect of culminating in a large (possibly very large) combined feature vector.

Thus three di�erent strategies were used to reduce the dimensionality of the com-

bined feature vectors. These were k-means clustering, neighbourhood elimination,

and the authors' strategy `3 points in a speci�c region'. The aim of all three strate-

gies was to reduce vector size by removing redundant data. As feature selection was

used, a cooperative data fusion approach was evident.

The methodology of concatenating feature vectors and then selecting the more

meaningful features was similar to the strategy used in the current study. The

only real di�erence in the current study was that the features were selected before

concatenation rather than after; this was a very minor di�erence and would be

unlikely to have impacted on any �ndings (though this is not known for certain).

Matching involved the comparison of a fused query feature set with a fused tem-

plate feature set (both constructed in the same manner). Two di�erent classi�cation

approaches were used: point pattern matching and Delauney triangulation.

For the point pattern matching, a matching probability was calculated as the

ratio of the number of correspondences to the total number of feature points in both

feature sets.

For the Delauney triangulation approach, the feature vectors (comprising infor-

mation derived from the delauney triangulation) were compared and a matching
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score was determined based on the number of corresponding triangles that both

feature sets had in common.

For the experiment, 5 facial images and 5 �ngerprint samples were collected,

from 50 individuals. Only 1 of the 5 samples per participant�for a facial im-

age/�ngerprint pair�was used to compute a reference template. The 4 remaining

sample pairs per participant were used for testing purposes. This involved compar-

ing a participants 4 query samples against the database of templates. Therefore,

there were 200 (50x4) genuine test scores and 2,450 (50x49) impostor test scores

generated. For the current experiment, the 140 typing samples and 140 �ngerprint

samples (from 90 participants) generated 100 genuine test scores per participant

(compared with 200 for all 50 participants). Also, 10,500 impostor test scores were

generated per participant (compared with 2,450 for all 50 participants).

The Rattani et al., (2007) experiment achieved best results when the `3 points in

a speci�c region' feature reduction strategy and the Delauney triangulation classi�er

were used in combination. For this methodology, a FAR of 0.0102 (1.02%) and a FRR

of 0.0195 (1.95%) resulted23. The results of the current study were more accurate

for both performance variables, and had many more samples for performing genuine

and impostor tests.

As the experiment conducted by Yao et al., (2007) reported results as a recogni-

tion rate of 90.73% (rather than the FAR and FRR), a direct comparison cannot be

made between their results and the results of either the current study or the other

reviewed research e�orts. The methods adopted by Yao et al., (2007) were novel and

it would have been advantageous to compare results using the usual performance

variables.

7.2.3.4 Summary of Cooperative Data Fusion Results

The results of the current experiment for the four stages of the cooperative data

fusion phase (listed below), were nearly as accurate as the Son and Lee (2005)

experiment, and more accurate than the Ross and Govindarajan (2005) and Rattani

et al., (2007) experiments:

23Note that the authors also demonstrated that feature level fusion out-performed con�dence
score level fusion in all tests.
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1. Stage 1 (40% of available data): a FAR of 0.00000381 and a FRR of 0.0004.

2. Stage 2 (50% of available data): a FAR of 0.0 and a FRR of 0.0006.

3. Stage 3 (60% of available data): a FAR of 0.0 and a FRR of 0.001.

4. Stage 4 (70% of available data): a FAR of 0.0 and a FRR of 0.001.

Fusion for stages 2 to 4 (where perfect performance was achieved for the FAR

variable), performed better than for stage 1. The FRR rates for these stages would

be considered more than acceptable for most applications. For stage 2, only one

of the �fty training group members incurred 3 false rejections; all other members

achieved perfect recognition for both performance variables. For stages 3 and 4,

only one of the �fty training group members incurred 5 false rejections; all other

members achieved perfect recognition for both performance variables.

For stage 1, only 40% of the combined feature vector was used, and the results

suggest that this percentage of data was insu�cient to produce the accuracy achieved

in the other three stages. Logically, this make sense as it could be expected that

some important features may be lost with only 2/5th of data utilised. Even so,

the results for stage 1 could still be acceptable in some applications. Only two of

the �fty training group members incurred 1 false acceptance, and only one of the

�fty training group members incurred 2 false rejections; all other members achieved

perfect performance for both variables.

It should be noted that the experiments by Son and Lee (2005) and Ross and

Govindarajan (2005) made no mention of the proportion of features (from both

sources) that constituted the combined feature vectors.

The current experiment investigated fusion at the four di�erent percentages

(40%, 50%, 60%, and 70%) of available data. The proportions that constitute the

combined vectors (of keystroke dynamics and �ngerprint features) were di�erent for

each participant for each stage of this experimental phase. The exact proportions

were determined by the feature selection process (refer Chapter 5 section 5.6.3.1).

The cooperative data fusion results achieved in the current study (particularly

for stages 2 to 4) demonstrated a very high degree of accuracy, and were better (or at
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least comparable to) other research e�orts in this �eld. The cooperative data fusion

results (particularly stage 2) were only marginally less accurate than the results for

the complementary data fusion phase (which performed best overall, with a FAR of

0.0 and a FRR of 0.0004).

The next section provides a conclusion to this chapter, by summarising the results

and some of the main di�erences between the experiments reviewed.

7.3 Conclusion

This chapter has discussed in detail the results obtained for the keystroke dynamics

phase of the experiment (section 7.2.1), the �ngerprint recognition phase of the

experiment (section 7.2.2), and the data fusion phase of the experiment (section

7.2.3. In each section, the experimental results of the current study presented in

Chapter 6 section 6.4 were discussed in detail, before comparing these results with

those of the reviewed research e�orts discussed in Chapter 3 section 3.4.1, Chapter

4 section 4.5, and Chapter 2 section 2.3.2.2 respectively.

Results demonstrated that the data fusion phase of the experiment performed

better than the other two phases. Of the data fusion approaches, the complementary

paradigm performed best with a FAR of 0.0 and a FRR of 0.0004. The cooperative

paradigm also performed very well, with stage 2 (fusion of 50% of available data)

performing the best with a FAR of 0.0 and a FRR of 0.0006. Stages 3 and 4 (fusion

of 60% and 70% of available data) also performed very well with FARs of 0.0 and

FRRs of 0.001. All were excellent results, and performed better than stage 1 (fusion

of 40% of available data) with a FAR of 0.004 and a FRR of 0.004.

The �ngerprint recognition phase of the experiment, whilst not achieving a FRR

as low as the data fusion phase (with the exception of stage 1 of the cooperative

data fusion phase), did achieve a FAR of 0.0 and FRR of 0.0022. With a FAR of

0.0, these are still excellent results even though the FRR was marginally higher.

The keystroke dynamics phase of the experiment performed worse than the other

two phases, with a FAR of 0.02766095 and a FRR of 0.0862. Given the known

variability of keystroke dynamics data, this was to be expected. However, the re-
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sults demonstrated that feature selection�to remove noisy/redundant data�does

improve accuracy for this biometric characteristic. Also, the data fusion results

suggest that even with the variability of keystroke dynamics data, good results are

attainable when data from this biometric characteristic are fused with data from

another (less variable) source.

As shown in the relative sections of this chapter, the results achieved in this study

were generally better than (or at least comparable to) other research e�orts in the as-

sociated �elds. The keystroke dynamics results did not achieve accuracy comparable

to the other two phases of the experiment, but did achieve accuracy comparable to

other research in the �eld (excluding those that used ANNs for classi�cation). The

�ngerprint recognition and data fusion results also achieved accuracy comparable to

other research in those �elds.

In relation to the �ngerprint recognition phase of the experiment, it should re-

membered that the treatment applied to the data was very di�erent from other

research e�orts and was speci�cally designed to facilitate feature level data fusion.

The fact that the results achieved for this phase were comparable with other research,

suggests that this methodology could be useful even if �ngerprint recognition was

to be used in a uni-modal application.

The excellent results achieved by the data fusion phase of the experiment demon-

strated that combining two or more sources of data does improve accuracy in the

authentication procedure. Whilst the results of the complementary paradigm were

better than the results for the cooperative paradigm, they were only marginally so.

The premise for the use of more than one biometric characteristic in the authenti-

cation procedure, is that it will make the system more accurate and robust. Though

accuracy and robustness are closely related, a subtle di�erence exists. Clearly, ac-

curacy can be measured, and has been established in both the current study and

the other research e�orts reviewed. Robustness is not as clearly obvious or mea-

surable, and may be thought of as a hidden property; it is more concerned with

making impersonation of a legitimate user more di�cult for an impostor, rather

than measuring the rate at which impostor samples are incorrectly accepted.
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No attempt has been made to evaluate the robustness of the biometric authen-

tication process presented in this study, because the author is not aware of any

methods to do so. However, considered belief among researchers in this �eld sug-

gests that combining more than one data source will make a system more robust,

because an impostor would need to impersonate multiple biometric characteristics.

In comparison to impersonating just one biometric characteristic, this logically be-

comes a more di�cult task.

An advantage of cooperative data fusion�over complementary data fusion�is

that the feature selection process involved means that it would be more di�cult

to forge the biometric signature, than if no selection was conducted. Some may

consider this to be �security through obscurity� (where the security level cannot be

measured or known). However, the feature selection process does not attempt to

obscure anything; it is transparent. The particular features selected are dependent

on the nature of the data rather than any obscurity due to the selection process.

A disadvantage of cooperative data fusion�compared to complementary data

fusion�is that the feature selection process adds extra complexity (and computa-

tional cost) to the task at hand. In the current study for example, the weights from

trained ANNs (from the complementary data fusion phase) were required for the

feature selection needed for the cooperative data fusion phase. This requirement

could render this particular methodology impractical for general use (because of the

extra computational cost), but may be acceptable for applications requiring stricter

security.

Given the results of the current study (with the complementary data fusion phase

achieving marginally better accuracy than the cooperative data fusion phase) it may

be questionable whether there is any real advantage to the cooperative paradigm,

other than the perceived robustness resulting from the feature selection. Until meth-

ods are available for testing the di�culty of impersonating a legitimate user (rather

than relying solely on accuracy measures), this question remains a moot point.

The next chapter provides a conclusion to this dissertation.
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Conclusion

This chapter concludes the current dissertation by summarising:

• The purpose and objectives of the research (section 8.1);

• The main contributions of the research to the �eld of biometric authentication

(section 8.2);

• The limitations of the research (section 8.3);

• The implications and practical applications of the research (section 8.4); and

• The future research that this dissertation stimulates (section 8.5).

8.1 Research Purpose and Objectives

In Chapter 1 section 1.2, the traditional authentication model was noted as being

the most utilised method for authentication procedures. This model is typically

token based, with a token consisting of either a key, a smart-card, or a password.

Password-based authentication systems are responsible for a large proportion of

computer network security breaches. Passwords may be compromised by loss, theft,

guessing or cracking. On the positive side, passwords are easily revocable. That is,

upon discovery of a compromised password, the token can simply be changed.

In recent years, biometric authentication systems have been increasingly in-

vestigated as a prospective alternative to password-based authentication systems.

437
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In Chapter 2 section 2.2, biometrics were introduced and considerations in rela-

tion to the practical implementation of the various biometric characteristics were

discussed.

The concept of utilising more than one biometric characteristic (for authentica-

tion purposes) was also discussed in Chapter 2 sections 2.2 and 2.3. Although few

authentication systems implement multiple biometrics in real world applications,

research has demonstrated that this approach has numerous bene�ts (refer Chap-

ter 2 section 2.3.2.2). However, there still remain practical concerns for biometric

authentication systems (in general), if they are to be implemented securely.

The purpose of this research was to provide a means for improving the initial

authentication procedure by evaluating a multi-modal biometric authentication sys-

tem, where data from two sources were fused at the feature level. A methodology

to implement and test such a system was developed (refer Chapter 5). The research

was undertaken on the premise that if two sources of data could be successfully

fused, then it was highly likely that more than two sources could be successfully

fused using a similar methodology.

There were three main objectives for the research, which became the three phases

of the experiment:

1. To investigate the e�ective use of the biometric characteristic keystroke dy-

namics (refer Chapter 5 section 5.4), and to assess the results in comparison

to previous research in this �eld (refer Chapter 7 section 7.2.1).

2. To investigate the e�ective use of the biometric characteristic �ngerprint recog-

nition, such that later feature level data fusion was facilitated (refer Chapter

5 section 5.5), and to assess the results in comparison to previous research in

this �eld (refer Chapter 7 section 7.2.2).

3. To investigate the feature level fusion of data from the previously stated two

sources (refer Chapter 5 section 5.6), and to assess the results in comparison

to previous research in this �eld (refer Chapter 7 section 7.2.3).
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It should be noted that the approaches adopted for phases 1 and 2 of these

experiments may not be considered the optimum approaches. However, as the key

objective was considered to be that related to phase 3, the methodology for phases

1 and 2 were adopted to facilitate phase 3.

In relation to phase 1, keystroke dynamics data (when evaluated) exhibits a high

degree of variability, and some might question the choice of this characteristic for

the experiment. The choice was made because keystroke dynamics has operational

advantages which make it practical and cost e�ective to implement. Provided steps

were taken to reduce the e�ect of the high degree of variability (as much as realis-

tically possible), it was considered that this biometric characteristic could still be

useful in a biometric authentication system (particularly a multi-modal authentica-

tion system where data fusion was performed at the feature level).

In relation to phase 2, �ngerprint recognition has proven accuracy in forensics and

biometric authentication research and applications. However in order to facilitate

ANN training and testing, and to meet the third objective of the study (feature level

data fusion), it was necessary to develop a new representation method for �ngerprint

features, which was very di�erent to that commonly used in biometric authentication

research (refer Chapter 5 section 5.5 and the review of related research in Chapter

4 section 4.5).

The method involved a pre-processing step to register �ngerprint features from

participant's �ngerprint samples. That is, all samples provided by the same partici-

pant were geometrically transformed such that feature correspondences were deter-

minable. Then 8 local features common to all 140 samples (for each participant)

were selected; this meant that all samples had a standard length feature vector.

In relation to phase 3, feature level data fusion (of the two previously stated

biometric characteristics) was investigated because fusion at this level was expected

to provide richer information upon which to base veri�cation (in comparison to

fusion performed at the decision or con�dence score levels); thus making the process

more accurate and reliable.
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To achieve feature level data fusion, where the data sets of the two di�erent

biometric characteristics exhibited di�erent units of measurement, data alignment

of the two data sets was necessary. A simple data alignment method was applied

to the transformed �ngerprint feature data (in its newly represented format), so

that data from this biometric could be meaningfully combined with the keystroke

dynamics data. This process resulted in feature vectors of a standard length for each

�ngerprint, which facilitated classi�cation by Arti�cial Neural Networks (ANNs) for

phases 2 and 3 of the experiment.

As discussed in Chapter 2 section 2.3.1.1, there are three paradigms of data

fusion. Two of the three paradigms were investigated in the experiment: the com-

plementary and the cooperative approaches. The complementary approach combines

100% of feature level data from all sources into one feature vector, whereas the co-

operative approach employs feature selection techniques and combines the selected

features from each individual source into one feature vector.

Classi�cation by an ANN is a very quick process. However, training an ANN

may take some time; training time can be reduced by training an individual ANN for

each legitimate user (as was done in this study), rather than training one ANN for

all legitimate users (as done in most other research studies reviewed). The approach

taken in the current study means that the method is scalable; if a new user needs

to be added to a system, one ANN can be trained for that user. It need have no

impact on the already trained ANNs for all other legitimate users.

The results for phases 1 and 2 of the experiment (the individual biometric charac-

teristics, keystroke dynamics and �ngerprint recognition) were presented in Chapter

6 sections 6.4.1 and 6.4.2 respectively, and were compared to results achieved by

other researchers in their respective �elds in Chapter 7 sections 7.2.1 and 7.2.2 re-

spectively. Also, the results for the feature level data fusion phase of the experiment

were presented Chapter 6 section 6.4.3, and were compared to results achieved by

other researchers in that �eld in Chapter 7 section 7.2.3.

The next section discusses the knowledge gained from this research, and the

contribution it makes to the �eld of biometric authentication.
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8.2 Main Contribution of the Research

This study is one of many into biometrics for authentication. The many biometric

characteristics achieve varying degrees of accuracy because of variations in instru-

ment accuracy, raw data format, data pre-processing, software accuracy, and the

uniqueness (between di�erent people) of the biometric characteristic under consid-

eration. Though standards for data collection methods and veri�cation processes

have been introduced in recent years, these e�orts are taking some time to �lter into

the biometric community (research and commercial).

The results for phase 1 of the experiment (keystroke dynamics), as presented

in Chapter 6 section 6.4.1 and discussed in Chapter 7 section 7.2.1, demonstrated

that the methodology adopted achieved results comparable to most previous stud-

ies involving keystroke dynamics. The experimental methodology involved more

participants than most studies reviewed in Chapter 3 section 3.4.1. Also, there

were generally many more samples provided by participants in the current study

compared to those studies reviewed.

The results for phase 2 of the experiment (�ngerprint recognition), as presented in

Chapter 6 section 6.4.2 and discussed in Chapter 7 section 7.2.2, demonstrated that

the methodology adopted achieved results as good as or better than most previous

studies involving �ngerprint recognition. The experimental methodology involved

more participants than most studies reviewed in Chapter 4 section 4.5. Also, there

were generally many more samples provided by participants in the current study

compared to those studies reviewed.

The results for phase 3 of the experiment (feature level data fusion), as presented

in Chapter 6 section 6.4.3 and discussed in Chapter 7 section 7.2.3, demonstrated

that the feature level data fusion achieved results as good as or better than most

previous studies involving data fusion. Of particular interest is that both comple-

mentary and cooperative paradigms achieved excellent results. The experimental

methodology involved more participants than most studies reviewed in Chapter 2

section 2.3.2.2. Also, there were generally many more samples provided by partici-

pants in the current study compared to those studies reviewed.
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As discussed in Chapter 2, biometric veri�cation systems rarely indicate that

two samples, taken from the same person at di�erent times, are a perfect match.

Instead the system only indicates the probability that two samples are from the

same person; that is, there is seldom absolute certainty.

When making the �nal veri�cation decision, it is crucial that the biometric veri-

�cation system attains the most accurate probability score possible. This is particu-

larly true when multiple characteristics are being used. Early studies using multiple

characteristics focused on fusing data at the decision or con�dence score levels.

More recent studies have attempted data fusion at the feature level. The current

study also investigated data fusion at the feature level. The concepts of decision,

con�dence score and feature level fusion were discussed in Chapter 2 section 2.3.2.1.

Fusion at the feature level uses data closest to the raw data, and therefore is richer in

feature information. It stands to reason that utilising the richness of these features

would be advantageous (taking full advantage of the uniqueness of the biometric

characteristics), to attain the best probability score. The current research aimed to

demonstrate this, and to develop a methodology which was e�cient and scalable.

At the commencement of the current study, relatively little work had been done

on feature level data fusion for biometric authentication. Feature level data fusion

requires combining data from di�erent biometric characteristics in a way that the

individual features of each characteristic are truly represented. From an operational

perspective, this poses di�culties in relation to the additional processing required

because of di�erences in data format between the characteristics.

In the current study, calculation of keystroke dynamics metrics of a speci�ed

character string, resulted in feature vectors proportional to the string length (thus

reducing extra processing for this characteristic). Fingerprint samples required a

new representation for feature data, which produced a standard length feature vector

that could then be simply fused with the scalar values of keystroke dynamics metrics.

Data alignment facilitated the attainment of a standard length feature vector for

the combined data. This meant that the fused feature vectors (for each sample) had

a common length, making the training and testing of ANNs manageable.
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It was demonstrated that feature level data fusion provided accuracy in the ver-

i�cation process that was comparable to, and in many cases better than, previous

research. The representation method used for the �ngerprint features (for the data

alignment and fusion purposes) may be applicable to other biometric characteris-

tics whose extracted features include coordinates in a two dimensional plane (for

example, facial features and hand geometry).

Therefore, the current investigation contributes to the �eld of biometrics gener-

ally, and multi-modal biometrics speci�cally, as follows:

• It con�rmed �ndings in previous research that uni-modal biometric systems

provide an accurate alternative to traditional authentication methods. In par-

ticular:

1. The feature selection method, using normality statistics, developed to �l-

ter `noisy' data from the raw data collected for this experiment, demon-

strated comparable results with previous research. This reinforced pre-

vious research which indicated that �ltering `noisy' data from keystroke

dynamics raw data improved veri�cation accuracy (though other �ltering

methods than that used in this research may improve accuracy further).

2. The new �ngerprint representation method developed to facilitate clas-

si�cation of �ngerprint feature data by Arti�cial Neural Networks (and

to facilitate the fusion of this �ngerprint feature data with keystroke dy-

namics data) demonstrated excellent results in comparison to previous

research.

• It con�rmed that multi-modal systems provide additional accuracy improve-

ments as well as a perceived robustness to the veri�cation process.

• It demonstrated the viability of the data fusion method for combining biomet-

ric data at the feature level. The results show an improvement in accuracy

compared with con�dence score level and decision level data fusion methods.

This demonstrates the importance of using rich feature level data.
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What makes this research of particular interest is the fusion of data at the feature

level. As mentioned in Chapter 2, most research into multi-modal biometrics has

concentrated on performing data fusion at the con�dence score level, where valuable

feature data is lost in the processing. Even though fusion at the con�dence score

level provides better accuracy and robustness than uni-modal biometric systems,

the current study demonstrated that even better accuracy gains can be achieved by

fusion of data at the feature level.

The methodology proposed in the current study can be generically applied to

any number, and any type, of biometric characteristics provided integrity of data is

ensured. As the algorithm is mathematically based, it is reasonable to assume that

other algorithms exist that can also be applied to fusion at the feature level.

The next section discusses the limitations of this research.

8.3 Limitations of the Research

Methodological issues that may impact on the internal and/or external validity of an

experiment were discussed in Chapter 5 section 5.7. In that section, the steps taken

to address possible validity concerns during the design and implementation of the

current experiment (which could then impact on the merit of the results achieved)

were discussed.

Though care was taken with the experimental design and implementation, in

order to provide as much con�dence as possible in the results achieved, there were

inevitably some issues that either could not be resolved within the available time-

frame of the experiment or that were unforeseen during the design phase; a common

theme with most research experiments.

Some of the identi�ed minor limitations with the current experiment are:

• With the time constraints for data collection, and the particular requirements

imposed on participants in collecting that data, recruitment was restricted to

only 90 participants. Whilst it would have been preferred to recruit many

more (in order to accredit more con�dence to the results achieved), 90 was
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all that could be recruited within the time-frame allocated for data collection.

However, it should be noted that this number of participants is higher than

most similar research projects reviewed.

• Only 100 samples per participant were available for testing false rejection (for

each of the three phases of the experiment). Whilst this quantity was more

than was used in most of the research e�orts reviewed (refer Chapter 3 section

3.4.1, Chapter 4 section 4.5, and Chapter 2 section 2.3.2.2), it did impose a

relatively course granularity on the FRR performance variable in comparison

to the FAR performance variable (where 10,500 samples per participant were

available for testing false acceptance). However as demonstrated by the re-

sults, this only seems to have had an impact with phase 1 of the experiment

(keystroke dynamics).

• The discussion of results presented in Chapter 7 section 7.2.1, demonstrated

that the feature selection process used to �lter out noisy data from the keystroke

dynamics raw data was not as successful as expected. Though there was good

reason for using the normality statistics to improve classi�cation accuracy dur-

ing ANN training (as discussed in Chapter 5 section 5.4.4), there may be other

appropriate methods of feature selection that could return improved results.

• The feature extraction process for the �ngerprint recognition phase relied on

third party software (refer Chapter 5 section 5.5.3). Though it was believed

that the third party software would extract features accurately, no empirical

proof can be furnished. However, the discussion of results presented in Chapter

7 section 7.2.2 indicated that the extraction process was accurate.

• As discussed in Chapter 5 section 5.3, no demographic data about the partici-

pants was collected1. However, it was believed that gender was slightly biased

toward males, age was slightly biased toward people in their 20's (though there

was a wide age range), and ethnicity was equally divided between Australian

and international students (predominantly South East Asian). Therefore, it

1This was because of the sensitivity of the data and the consequent conditions under which
Ethics Committee approval was granted for data collection.
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cannot be claimed with certainty that the samples provided by participants

(for the experiment) were representative of the general population. However,

because of the nature of the data collected, there is no reason to suggest that

this impacts signi�cantly on the generalisability of the methodology or results.

• As the experiment was conducted in a predominantly English speaking coun-

try (though numerous international students participated), data collection for

phase 1 of the experiment (keystroke dynamics) was performed on a keyboard

with English characters. Many non-English speaking countries have at their

disposal the Unicode character set. It is unknown if the results of the ex-

periment would be impacted by the use of Unicode characters in non-English

speaking countries. It is suspected that results would not be a�ected, but this

cannot be asserted with any certainty.

An issue that remains unresolved in the �eld of biometrics for authentication pur-

poses is that of a compromised registered template (for any biometric characteristic).

When computers are networked, it must always be assumed that vulnerabilities do

exist and that attackers could gain access to at least some part of the network.

This being the case (and assuming an attacker can raise privileges to an appropriate

level), authentication tokens are subject to theft or corruption.

For password-based authentication systems, a stolen or corrupted token is easily

revocable simply by assigning a new password for the legitimate user in question.

This of course will happen only if a breach is discovered, or when theft or corruption

is reasonably suspected.

However, a speci�c biometric token is not revisable at all and would need to be

replaced. Once compromised the characteristic associated with that biometric for

that particular user can no longer be utilised. That is, the user cannot change the

features associated with that particular biometric characteristic.

This means that su�ciently secure transmission and storage protocols need to

be developed for data that are to be used (for both registered templates and query

samples) in a biometric authentication system. To the authors knowledge, no such

protocols have yet been developed.
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A possible limitation with any classi�cation problem is the method used to de-

termine the �nal decision boundary. At some point a decision to verify a sample as

correct or incorrect must be made. With methods associated with the traditional

authentication model, this �nal veri�cation decision is usually based on a straight

forward comparison of discrete values. For example, when logging on to a computer

system, a comparison is made between the stored value of a user's password (i.e.

their registered template) and the one they supply when attempting to log on (i.e. a

query sample). For authentication to be granted, the two passwords (more precisely

the hashes of these passwords) must match exactly (via a character-by-character

comparison). If they do match exactly, access is granted; if they do not, access is

denied.

When using biometrics, the �nal veri�cation decision cannot be based on a

straight forward comparison of discrete values. Instead, it is typically based on

the probability that two samples match. That is, the stored registered template is

compared with a query sample and a probability score is produced. As mentioned

in Chapter 2, it is extremely rare for two biometric samples�taken from the same

person at di�erent times�to match exactly. De�nite and recognisable patterns will

exist within both samples, but they will rarely be exactly the same.

So the �nal veri�cation decision must allow for some �exibility, whilst still en-

suring correct veri�cation. Typically a statistical approach is employed, where the

probability score is applied to an arbitrary cut-o� value (i.e. �nal decision thresh-

old). If the probability score meets the threshold condition (i.e. it is greater than

the �nal decision threshold), access is granted; if it does not (i.e. it falls below the

�nal decision threshold), access is denied.

Even though a multi-modal biometric system can be more accurate and robust

than a uni-modal system, a �nal veri�cation decision must still be made. Therefore,

neither uni-modal nor multi-modal biometric systems have a clearly de�nable deci-

sion boundary. Thus the method employed to make this �nal veri�cation decision

(in any automated system) is a subject of concern.
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It was an intention at the commencement of the current experiment, to inves-

tigate this problem and o�er some empirically tested methods for making such a

decision. However, time limitations did not allow for this, primarily because it

was a more complex problem than �rst thought. How would an automated system

anticipate and cater for all possible circumstances?

For human beings, a recognition decision is a matter of judgment which most of us

make every day; computers do not inherently possess such recognition capabilities.

If a human being is faced with incomplete data, they can try to determine more

facts. They can make intuitive guesses based on prior knowledge or experience.

Computers on the other hand do not have the capability to retain knowledge or learn

from experience unless they are speci�cally programmed to do so, and attempting

to program a computer to perform such tasks is very complex and di�cult.

The next section discusses what might be implied from this research, and the

practical considerations necessary if applying the methodology in a biometric au-

thentication system.

8.4 Implications and Practical Application of the

Research

From the discussion presented in Chapter 7 sections 7.2.1, 7.2.2, and 7.2.3, the

results indicated the research had the following implications:

• Feature selection (i.e. pre-processing) of keystroke dynamics data does improve

accuracy when compared to data that has not been pre-processed.

• The proposed �ngerprint feature representation method developed for this

experiment�to facilitate ANN training and testing, and feature level data

fusion�provides accurate veri�cation in both a uni-modal and a multi-modal

context. It also implies that the representation method could be adapted for

use by any biometric characteristic whose extracted features included coordi-

nates in a two dimensional plane.
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• By normalisation, �ngerprint feature data (or data from any biometric char-

acteristic whose extracted features include coordinates in a two dimensional

plane) can be simply aligned to be compatible with a scalar valued system

such as keystroke dynamics data. This results in all samples for all partic-

ipants having the same length feature vectors for each individual biometric

characteristic, and means that all samples for all participants have combined

feature vectors of the same length, which facilitates feature level data fusion.

• Feature level data fusion indeed provides excellent veri�cation accuracy. Though

the results for the complementary approach were best overall, the cooperative

approach performed nearly as well (with the exception of Stage 1). This im-

plies that feature level data fusion may not require all data from all sources

to be combined in order to attain an acceptable level of veri�cation accuracy.

In terms of the practical implementation of the methods proposed in this disser-

tation, the following points require consideration:

• Feature selection of keystroke dynamics data was performed as a separate

process, using the statistical software package SPSS. This approach was taken

because it was deemed necessary to have available all data at all stages of the

experiment, in case later analysis was required. It would be unlikely that this

approach would be acceptable for an actual authentication system, because

such a real-world application would require automated processing. However,

many statistical software packages (such as SPSS and R) do provide command

line interfacing which would allow the required statistical processing to be

incorporated into an automated authentication system.

• For the representation method applied to the �ngerprint recognition phase of

the experiment, prior registration of the �ngerprint features (for all samples)

was required. This then allowed for the determination of the 8 features (that

demonstrated the most accurate alignment) to be selected across all 140 sam-

ples for each participant (refer Chapter 5 section 5.5.5). It also allowed for

the inclusion of 6 attributes for each �ngerprint feature2; this provided more

2To the authors knowledge, this is the only study to make use of six local feature attributes.
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information upon which to base veri�cation. This seems an e�ective approach

for practical applications.

• Considerations in relation to the feature level data fusion using the complemen-

tary paradigm eventuate because of the length of the combined feature vector.

The complementary paradigm utilises 100% of the data from all sources, and

as a result the combined feature vector could be inordinately large. That is,

it may su�er from the curse of dimensionality. As is typical for the curse of

dimensionality, the combined vector could likely contain data that is either

redundant to the recognition task or has very little relevance to it. Therefore,

practical applications using the complementary paradigm could investigate

mechanisms to reduce the e�ects of this problem3.

• Feature level data fusion using the cooperative paradigm requires the following

considerations (refer Chapter 5 section 5.6.3):

1. What percentage of the available data (from all sources) should be utilised

in the selection process? The variability attributed to the biometric char-

acteristics under consideration, and the needs of the system under devel-

opment, should determine the percentage. It is entirely possible that

certain percentages will not be practicable for implementation.

2. What proportion of the chosen percentage should each of the individual

data sources contribute to the newly created fused data set? Again, the

answer to this question will be dependent on the variability attributed

to the biometric characteristics under consideration, and the needs of the

system under development.

As illustrated in Table 5.12 (refer Chapter 5 section 5.6.3.1), the average

proportionate ratio (based on average approximate relative local gains)

between the keystroke dynamics and �ngerprint feature was 14.1848. This

average (for the 50 training group members) suggests an approximate 1:14

ratio. Though these are very rough statistics, they do imply that (on

3The most common approach is to perform feature selection, which from a data fusion perspec-
tive, refers to the use of the cooperative paradigm.
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average) there was a much larger representation of �ngerprint features in

the combined feature vectors than there was keystroke dynamic metrics

(for this experiment). Practical applications of this approach would need

to include parameters to manage, or at least report, the ratio of usage

from the multiple data sets.

3. What method or criteria should be used to determine the relevance�and

subsequent selection�of features? In the current study it was decided

to utilise the weights from the ANNs, that had been previously trained

during the complementary data fusion phase, to select relevant features

from the keystroke dynamics and �ngerprint feature data sets. This was

done for convenience as the weights were available, and there seemed no

good reason not the utilise them for this purpose. According to Dash

and Liu (1997), there are other methods available for this purpose (i.e.

feature selection), although these were not investigated for the current

experiment. A practical application of this approach should include a

range of options for criteria selection for the relevance of features.

The next section discusses future research directions that may be stimulated by

the current investigation.

8.5 Future Research Directions

As was apparent in the review of keystroke dynamics related research (in Chapter 3

section 3.4), there have been numerous investigative e�orts to reduce (the e�ects of)

the variability in keystroke dynamics data. The review demonstrated that feature

selection does in fact reduce the e�ects of the data variability, at least to some

degree. Also demonstrated was that the use of the keystroke duration and digraph

latency metrics worked better than other contrived metrics.

In the current investigation, normality statistics were used to �lter out extreme

valued metrics at the tails of an assumed normal distribution (refer Chapter 5 section

5.4.4). This resulted in better accuracy compared to some other research e�orts,
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but not all. It is the belief of the author that research into other feature selection

methods could result in further reduction in the variability of keystroke dynamics

data, and thereby improve veri�cation accuracy.

The �ngerprint feature representation method developed for this experiment, re-

turned excellent results. In the author's opinion, this methodology shows promise for

both uni-modal and multi-modal applications. Future research should trial practical

applications of this approach to �ngerprint authentication systems.

Other biometric characteristics that could possibly bene�t from this method of

representation are facial recognition, hand geometry, iris and retinal recognition.

The only requirement for the use of the methodology is that identi�ed features have

their locations recorded as coordinates in a two dimensional plane. Research to

apply this methodology to other biometric characteristics may be advantageous.

The real bene�t of the representation method became apparent when multiple

biometric characteristics were used in a multi-modal authentication system, where

feature level data fusion was applied. Because the representation method resulted in

feature vectors of a standard length, data fusion at the feature level was easily facil-

itated. Further research on feature level data fusion for multi-modal authentication

systems is recommended.

As mentioned in section 8.1, the traditional (password-based) authentication

mechanism has associated shortcomings, but also has one major advantage: a com-

promised password is easily revoked. Unfortunately, the same cannot be said for

a compromised registered biometric template. Once compromised, that particular

biometric characteristic can no longer be used securely. That is, a biometric token

cannot be replaced as simply as a password can.

A biometric token may be compromised in either of the following ways:

1. The template may be stolen, which may occur in one of two ways:

(a) Stolen online by means of some vulnerability associated with the system,

or the authentication procedure, or a network transaction. Once access

is gained, an attacker could attempt to elevate their privileges to perform

the unauthorised theft.
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(b) Stolen by an internal source (i.e. a mischievous employee). Again once

access is gained, the employee could attempt to elevate their privileges

to perform the unauthorised theft.

2. A physical spoof of the particular biometric characteristic may be created to

match the registered biometric template. For example, a latent �ngerprint

could be `lifted' from a drink glass and transferred to a `dummy' �nger (typi-

cally composed of silicone).

A reason for the success of the above attacks (refer Chapter 1 section 1.2.1), is

the lack of su�ciently secure protocols for network transmission of registered and

query biometric templates during the authentication procedure. Of equal concern is

the lack of su�ciently secure protocols for storage of registered biometric templates.

Research to overcome limitations in these areas is vital if biometric authentication

procedures are to be considered a viable alternative to the traditional (password-

based) authentication model.

8.6 Final Remarks

The �rst objective of the research (phase 1 involving keystroke dynamics) did demon-

strate that feature selection (to �lter out the most noisy features) achieved results

comparable to many of the other research e�orts reviewed. However, the feature

selection method chosen did not perform as well as expected. The second and third

objectives (phases 2 and 3 involving �ngerprint recognition and feature level data

fusion respectively) demonstrated excellent performance overall and fared as well as,

or better than, most other research e�orts reviewed.

As just mentioned, the feature selection method chosen to �lter keystroke dy-

namics data was not as e�ective as anticipated. The rationale for using the nor-

mality statistics for this purpose seemed sound, and did return comparable results

the many of the other research e�orts reviewed. However, other feature selection

methodologies may exist which could return improved accuracy.
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The �ngerprint feature representation method developed for this experiment

demonstrated an innovative and e�ective technique, whether used in a uni-modal

or a multi-modal context. As the new �ngerprint representation method resulted in

standard length feature vectors, data alignment and subsequent feature level data

fusion was e�ciently and practicably facilitated.

The main contributions of the research are that uni-modal biometric systems

provide an accurate alternative to traditional authentication methods, multi-modal

biometric systems provide additional accuracy improvements (as well as a perceived

robustness) to the veri�cation process, and feature level data fusion provides im-

proved accuracy compared with con�dence score level and decision level data fusion

methods (which demonstrates the importance of using feature rich data).

Finally, the research implies that feature selection of keystroke dynamics data

does improve accuracy (when compared to data that has not been pre-processed), the

proposed �ngerprint feature representation method developed for this experiment

provides accurate veri�cation in both a uni-modal and a multi-modal context (as

well as facilitating feature level data fusion), and feature level data fusion indeed

provides excellent veri�cation accuracy.

The results indicate that feature level data fusion may not require all data from

all sources to be combined in order to attain an acceptable level of veri�cation

accuracy. This implies that a cooperative approach to data fusion o�ers a realistic

alternative to the complementary approach, which simply combines all available

data, and may o�er reductions in processing time.



Appendix A

455



456 APPENDIX A.

A.1 Reported Security Breaches And

Vulnerabilities

YEAR INCIDENTS

1988 6

1989 132

1990 252

1991 406

1992 773

1993 1,334

1994 2,340

1995 2,412

1996 2,573

1997 2,134

1998 3,734

1999 9,859

2000 21,756

2001 52,658

2002 82,094

2003 137,529

Table A.1: Reported Security Breaches (1988-2003)

Figure A.1: Reported Security Breaches (1988-2003)
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YEAR INCIDENTS

1995 171

1996 345

1997 311

1998 262

1999 417

2000 1,090

2001 2,437

2002 4,129

2003 3,784

2004 3,780

2005 5,990

2006 8,064

2007 7,236

2008 7,572

Table A.2: Reported Vulnerabilities (1995-2008)

Figure A.2: Reported Vulnerabilities (1995-2008)
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DATE NUMBER SOURCE

June-02 580,780,000 Nua Ltd

April-02 572,320,000 Nua Ltd

February-02 569,140,000 Nua Ltd

January-02 562,470,000 Nua Ltd

December-01 552,510,000 Nua Ltd

November-01 518,550,000 Nua Ltd

October-01 518,940,000 Nua Ltd

September-01 515,860,000 Nua Ltd

August-01 515,580,000 Nua Ltd

July-01 510,090,000 Nua Ltd

June-01 480,870,000 Nua Ltd

May-01 462,620,000 Nua Ltd

April-01 460,920,000 Nua Ltd

March-01 458,110,000 Nua Ltd

February-01 455,550,000 Nua Ltd

January-01 455,550,000 Nua Ltd

December-00 451,040,000 Nua Ltd

November-00 407,100,000 Nua Ltd

October-00 381,790,000 Nua Ltd

September-00 377,650,000 Nua Ltd

August-00 368,540,000 Nua Ltd

July-00 359,800,000 Nua Ltd

June-00 336,520,000 Nua Ltd

March-00 309,700,000 Nua Ltd

February-00 280,860,000 Nua Ltd

January-00 254,290,000 Nua Ltd

September-99 201,050,000 Nua Ltd

August-99 195,190,000 Nua Ltd

July-99 185,200,000 Nua Ltd

June-99 179,000,000 Nua Ltd

May-99 171,250,000 Nua Ltd

April-99 163,250,000 Nua Ltd

March-99 159,000,000 Nua Ltd

February-99 153,500,000 Nua Ltd

December-98 150,000,000 Nua Ltd

September-98 147,000,000 Nua Ltd

July-98 129,500,000 Nua Ltd

January-98 102,000,000 MIDS

December-97 101,000,000 Nua Ltd

November-97 76,000,000 Reuters

September-97 74,000,000 Nua Ltd

February-97 57,000,000 MIDAS

December-96 55,000,000 Nua Ltd

January-96 30,000,000 Killen & Associates

December-95 26,000,000 Nua Ltd

Table A.3: Number of Internet Users (December 1995-June 2002)
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Figure A.3: Number of Internet Users (December 1995-June 2002)
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Appendix B

B.1 Keystroke Dynamics Metrics Selection Worked

Example

This appendix provides a worked example of the keystroke dynamics metrics selec-

tion process as described in Chapter 5 section 5.4.4. The example uses data from

participant one. The example is presented in four stages, with the relevant data

demonstrated in Tables B.1, B.2, B.3, and B.4.

Firstly, Table B.1 shows the normality, kurtosis, skewness, and standard devi-

ation coe�cients for each of the 40 metrics/variables, as calculated by the SPSS

software. The data is ordered according to the metric/variable number. Note that

for ranking and sorting purposes, the normality, kurtosis and skewness coe�cients

have been multiplied by 1000. Also, because the kurtosis and skewness coe�cients

may have positive or negative values�and because proximity to 0 is of primary

importance for ranking purposes�their absolute values are shown.

Table B.2 illustrates the same data as that presented in Table B.1, but with the

individual statistics sorted as described in section 5.4.4. The normality statistics

have been sorted in descending order from those closest to 1000 (refer section 5.4.4).

The kurtosis, skewness, and standard deviation statistics have been sorted in as-

cending order from those closest to 0 (refer section 5.4.4). Note that the association

between the individual statistics and their metric numbers have been maintained.

461
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Metric Normality Kurtosis Skewness Standard

Deviation

1 847 813 301 19.02006

2 920 2453 1159 35.63588

3 827 164 442 18.11700

4 882 239 73 22.76521

5 871 103 58 20.75653

6 938 784 42 34.63968

7 820 538 284 18.47439

8 896 530 607 34.60668

9 875 470 268 23.73231

10 946 972 57 38.25162

11 828 1677 97 18.76443

12 947 3131 1373 37.03994

13 796 1167 635 16.29006

14 902 5438 1164 26.59559

15 914 62 607 33.31021

16 908 926 768 42.62738

17 950 411 157 34.00310

18 851 7981 2096 30.01648

19 930 466 293 29.06955

20 949 37 453 43.14939

21 856 787 191 20.18614

22 933 1329 134 51.11554

23 893 1790 1001 40.66103

24 949 515 404 48.02088

25 893 348 191 21.13491

26 872 479 170 22.87560

27 905 758 603 27.74115

28 934 357 146 28.95792

29 921 96 465 25.83840

30 976 29 134 58.66757

31 909 537 320 23.15184

32 966 929 415 53.01140

33 941 79 533 40.74174

34 958 531 63 40.18571

35 936 236 312 32.17796

36 870 1418 253 23.90844

37 933 182 270 29.05820

38 905 192 129 27.69836

39 914 111 239 29.21093

40 969 251 228 54.11489

Table B.1: Coe�cient Values For Each Metric
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Metric Normality Metric Kurtosis Metric Skewness Metric Standard
Deviation

30 976 20 37 21 3 13 16.2901
40 969 15 62 30 6 3 18.1170
32 966 32 64 32 22 7 18.4744
34 958 33 79 36 41 11 18.7644
17 950 34 93 6 42 1 19.0201
20 949 5 103 31 49 21 20.1861
24 949 39 111 5 58 5 20.7565
12 947 14 137 4 73 25 21.1349
10 946 3 164 10 93 4 22.7652
33 941 37 182 14 95 26 22.8756
6 938 38 192 11 97 31 23.1518
35 936 29 202 38 129 9 23.7323
28 934 35 236 26 133 36 23.9084
22 933 4 239 28 146 29 25.8384
37 933 40 251 17 157 14 26.5956
19 930 31 299 25 191 38 27.6984
29 921 30 307 40 228 27 27.7412
2 920 25 348 39 239 28 28.9579
15 914 28 357 9 268 37 29.0582
39 914 17 411 37 270 19 29.0695
31 909 21 426 7 284 39 29.2109
16 908 26 438 34 290 18 30.0165
27 905 19 466 19 293 35 32.1780
38 905 9 470 1 301 15 33.3102
14 902 12 499 35 312 17 34.0031
8 896 24 515 29 342 8 34.6067
23 893 8 530 24 404 6 34.6397
25 893 7 538 12 412 2 35.6359
4 882 22 557 3 442 12 37.0399
9 875 18 616 20 453 10 38.2516
26 872 27 758 33 533 34 40.1857
5 871 6 784 27 603 23 40.6610
36 870 1 813 8 607 33 40.7417
21 856 10 829 15 607 16 42.6274
18 851 16 926 13 635 20 43.1494
1 847 36 1082 22 661 24 48.0209
11 828 13 1167 2 758 22 51.1155
3 827 2 1246 16 768 32 53.0114
7 820 11 1677 18 770 40 54.1149
13 796 23 1790 23 1001 30 58.6676

Table B.2: Sorted Coe�cient Values And Associated Metric Numbers

Table B.3 demonstrates the rankings allocated to the metrics according to the

ordered individual statistics that were illustrated in Table B.2. The rankings were

assigned as speci�ed in Table 5.1 (refer Chapter 5 section 5.4.4 page 241). Again,

the association between the ordered individual statistics and their metric numbers

were maintained.
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Metric Normality Metric Kurtosis Metric Skewness Metric Standard
Deviation

30 1 20 0.5 21 0.2 13 0.2
40 0.975 15 0.4875 30 0.195 3 0.195
32 0.95 32 0.475 32 0.19 7 0.19
34 0.925 33 0.4625 36 0.185 11 0.185
17 0.9 34 0.45 6 0.18 1 0.18
20 0.875 5 0.4375 31 0.175 21 0.175
24 0.85 39 0.425 5 0.17 5 0.17
12 0.825 14 0.4125 4 0.165 25 0.165
10 0.8 3 0.4 10 0.16 4 0.16
33 0.775 37 0.3875 14 0.155 26 0.155
6 0.75 38 0.375 11 0.15 31 0.15
35 0.725 29 0.3625 38 0.145 9 0.145
28 0.7 35 0.35 26 0.14 36 0.14
22 0.675 4 0.3375 28 0.135 29 0.135
37 0.65 40 0.325 17 0.13 14 0.13
19 0.625 31 0.3125 25 0.125 38 0.125
29 0.6 30 0.3 40 0.12 27 0.12
2 0.575 25 0.2875 39 0.115 28 0.115
15 0.55 28 0.275 9 0.11 37 0.11
39 0.525 17 0.2625 37 0.105 19 0.105
31 0.5 21 0.25 7 0.1 39 0.1
16 0.475 26 0.2375 34 0.095 18 0.095
27 0.45 19 0.225 19 0.09 35 0.09
38 0.425 9 0.2125 1 0.085 15 0.085
14 0.4 12 0.2 35 0.08 17 0.08
8 0.375 24 0.1875 29 0.075 8 0.075
23 0.35 8 0.175 24 0.07 6 0.07
25 0.325 7 0.1625 12 0.065 2 0.065
4 0.3 22 0.15 3 0.06 12 0.06
9 0.275 18 0.1375 20 0.055 10 0.055
26 0.25 27 0.125 33 0.05 34 0.05
5 0.225 6 0.1125 27 0.045 23 0.045
36 0.2 1 0.1 8 0.04 33 0.04
21 0.175 10 0.0875 15 0.035 16 0.035
18 0.15 16 0.075 13 0.03 20 0.03
1 0.125 36 0.0625 22 0.025 24 0.025
11 0.1 13 0.05 2 0.02 22 0.02
3 0.075 2 0.0375 16 0.015 32 0.015
7 0.05 11 0.025 18 0.01 40 0.01
13 0.025 23 0.0125 23 0.005 30 0.005

Table B.3: Sorted Metrics With Rank Allocations

Table B.4 illustrates the results of accumulating the allocated rankings for the

four statistics (for each metric/variable). The metrics are in ascending order; columns

2 to 5 show the allocated rank for the individual statistics for the corresponding met-

rics; column 6 provides the sum of the four statistics per metric. The selected metrics

for this participant are those with the highest accumulated scores, and are indicated

by the `*' character along side the total in column 6.
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Metric Normality Kurtosis Skewness Standard

Deviation

Total

1 0.125 0.1 0.085 0.18 0.49

2 0.575 0.0375 0.02 0.065 0.6975

3 0.075 0.4 0.06 0.195 0.73

4 0.3 0.3375 0.165 0.16 0.9625

5 0.225 0.4375 0.17 0.17 1.0025

6 0.75 0.1125 0.18 0.07 1.1125*

7 0.05 0.1625 0.1 0.19 0.5025

8 0.375 0.175 0.04 0.075 0.665

9 0.275 0.2125 0.11 0.145 0.7425

10 0.8 0.0875 0.16 0.055 1.1025*

11 0.1 0.025 0.15 0.185 0.46

12 0.825 0.2 0.065 0.06 1.15*

13 0.025 0.05 0.03 0.2 0.305

14 0.4 0.4125 0.155 0.13 1.0975*

15 0.55 0.4875 0.035 0.085 1.1575*

16 0.475 0.075 0.015 0.035 0.6

17 0.9 0.2625 0.13 0.08 1.3725*

18 0.15 0.1375 0.01 0.095 0.3925

19 0.625 0.225 0.09 0.105 1.045

20 0.875 0.5 0.055 0.03 1.46*

21 0.175 0.25 0.2 0.175 0.8

22 0.675 0.15 0.025 0.02 0.87

23 0.35 0.0125 0.005 0.045 0.4125

24 0.85 0.1875 0.07 0.025 1.1325*

25 0.325 0.2875 0.125 0.165 0.9025

26 0.25 0.2375 0.14 0.155 0.7825

27 0.45 0.125 0.045 0.12 0.74

28 0.7 0.275 0.135 0.115 1.225*

29 0.6 0.3625 0.075 0.135 1.1725*

30 1 0.3 0.195 0.005 1.5*

31 0.5 0.3125 0.175 0.15 1.1375*

32 0.95 0.475 0.19 0.015 1.63*

33 0.775 0.4625 0.05 0.04 1.3275*

34 0.925 0.45 0.095 0.05 1.52*

35 0.725 0.35 0.08 0.09 1.245*

36 0.2 0.0625 0.185 0.14 0.5875

37 0.65 0.3875 0.105 0.11 1.2525*

38 0.425 0.375 0.145 0.125 1.07*

39 0.525 0.425 0.115 0.1 1.165*

40 0.975 0.325 0.12 0.01 1.43*

Table B.4: Accumulated Rank Score For Metrics

Note that the selected metric correspond to those presented in Table 5.2 Chapter

5 section 5.4.4 page 244. Note also that in Table 5.2 the index numbers are illus-

trated, whereas Table B.4 presents the metric numbers (the metric numbers are one

more than the index numbers).
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Appendix C

This appendix provides information about the programs developed for the three

phases of the experiment (as described in Chapter 5 sections 5.4, 5.5, and 5.6). As

such, there are three sections to this appendix; one for each phase. Software are

listed in the sequence that they were developed. Also, a basic description of the

tasks they were designed to perform is provided1.

C.1 Keystroke Dynamics Phase Software

As presented in Chapter 5 section 5.4.1, the program used to capture the raw data

from keystroke events was developed using Borland C++ Builder. This program

presented participants with a Graphical User Interface (GUI) to guide their data

entry (see Figure 5.1). It captured and recorded the time values associated with

keystroke events at a 1 millisecond resolution, and included mechanisms to �lter

erroneous participant input.

For the development of the remainder of the software the following directory

structure was required. A `keystrokes' directory contained all software for this phase

of the experiment. A parent directory to the keystrokes directory was required for the

ANN software. This directory `mbpann' contained all software related to the Matrix

Back Propagation Arti�cial Neural Network, including the executable programs to

train and test ANN's (`mbp' and `mbpval' respectively).

Table C.1 illustrates the subdirectories (and their contents) that were required

under the keystrokes directory. Their requirement will become clear as the software

is described.

1For a more in depth description, refer to the relevant section in Chapter 5

467
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Directory Contents

analysis described in section C.1.1
metrics_data �les containing selected metrics
metrics_norm �les containing normalised selected metrics
metrics_original �les containing originally extracted metrics
non_train non-training data �les (used for testing only)
raw_data �les captured during data collection
results results from testing
train_data training data �les
test_data testing data �les
validation_data validation (during training) data �les

Table C.1: Keystroke Dynamics Directory Structure

C.1.1 Pre-processing

Under the keystrokes/analysis/ directory, the following pre-processes were imple-

mented (in the order listed), using the speci�ed software:

1. Replace Outliers: Prior to SPSS analysis, the script replaceOutliers.pl reads

original metrics from keystrokes/metrics_original/m???.txt �les, calculates

the mean and standard deviation for each metric/variable across all 140 sam-

ples, and determines outlier values. Discounting the outlier values, new mean

and standard deviation values are calculated. The outlier values in the data

�les are then replaced with the newly calculated mean. The new data sets

(with outliers replaced) are output to spss_data/m???.txt, and used for SPSS

analysis.

2. SPSS Analysis: Determine normality, kurtosis, and skewness coe�cients and

standard deviation for the 40 metric/variables (across 140 samples) for each

participant. Normality outputs are stored in normality/???norm.txt; kurtosis

and skewness outputs are stored in skewkurt/???zsk.txt; standard deviation

outputs are stored in stats/???msd.txt.

3. Extract Normality Coe�cients: After SPSS analysis is completed, the script

extract_norm.pl reads normality/???norm.txt �les, extracts the normality val-

ues, multiplies them by 1000, and outputs to normality/???norm.out �les.



C.1. KEYSTROKE DYNAMICS PHASE SOFTWARE 469

4. Extract Kurtosis and Skewness Coe�cients: After SPSS analysis is com-

pleted, the script extract_skewkurt.pl reads skewkurt/???zsk.txt �les, extracts

the kurtosis and skewness values, multiplies them by 1000, calculates their ab-

solute values, and outputs to skewkurt/???zsk.out �les.

5. Extract Standard Deviation: After SPSS analysis is completed, the script

extract_stats.pl reads stats/???msd.txt �les, extracts the mean and standard

deviation values, and outputs to stats/???msd.out �les.

6. Rank Statistics: The script sortMetrics.pl reads all .out �les from the normal-

ity, skewkurt, and stats directories, sorts each �les data into appropriate order

(i.e. ranks the normality coe�cient in descending order, and the kurtosis

and skewness coe�cients and standard deviation in ascending order, whilst

maintaining the association between the metric/variable numbers and the co-

e�cients), and outputs to spss_output/???.out �le.

7. Select Metrics: The script selectMetrics.pl reads from spss_data/m???.out and

from spss_output/???.out �les, and determines the top 20 metrics based on

combined ranks from normality, kurtosis, skewness, and standard deviation.

Output is written to spss_output/???.met �les.

8. Extract Metrics: The script extractMetrics.pl reads from spss_output/???.met

and from keystrokes/metrics_original/m???.txt �les. The best 20 metrics

determined by the selectMetrics.pl script are used to select the actual met-

rics from keystrokes/metrics_original/m???.txt �les. The global statistics are

also calculated and pre-pended to the chosen metrics. Output is written to

keystrokes/metrics_data/m???.txt �les.

C.1.2 Experimental Procedure

Under the keystrokes directory, the following procedures were implemented (in the

order listed), using the speci�ed software:

1. Metrics Calculation: The script metrics.pl reads from raw_data/???.txt �les,

calculates the metrics and outputs to metrics_original/m???.txt.
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2. Metrics Selection: After the calculation of metrics, data analysis was per-

formed on data in metrics_original (refer section C.1.1 above). SPSS software

was used to obtain relevant statistics (i.e. normality, kurtosis, and skewness

coe�cients and standard deviation) used in the keystroke dynamics metric se-

lection process. Selected metrics were output to metrics_data/m???.txt �les.

3. Normalisation: The script normalise.pl reads from metrics_data/m???.txt �les,

normalises the chosen metrics (using the min/max normalisation method) and

writes output to �les in metrics_norm/m???.txt �les.

4. Member Selection: The script randParts.pl randomly allocates participants

to the training and non-training groups; the non-training group members data

�les are moved from metrics_norm to non_train directory (these data are

used for testing purposes only), and the training group members data �les are

moved from metrics_norm to train_data directory.

5. Validation Data: The script valFiles.pl randomly selects 10 samples (from 140

available) from each training group members metrics �le (train_data/m???.txt).

The chosen samples are written to validation_data/val??? �les, and are used

for cross validation during training. Note the selected samples are removed

from the metrics �les, leaving 130 available in each training group members

metrics �le.

6. Training Samples: The script randSamples.pl randomly selects 30 training

samples (from the remaining 130) from each training group members metrics

�le (train_data/m???.txt). The chosen samples are written to train_data/trn???

�les, and are used for training purposes only. The remaining 100 samples for

each training group member (left after training and validation samples have

been removed) are used as testing samples and are written to test_data/tst???

�les.

7. Training Data: The script trnFiles.pl creates the ANN training �les for train-

ing group members. It reads from train_data/trn??? �les and writes to
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train_data/trf???. For each training group member, the script randomly se-

lects (without removing) one training sample from each of the other 49 train-

ing group members, and appends these to the 30 training samples selected for

that member. This results in 79 samples (30+49) per training �le per training

group member.

8. Testing Data The script tstFiles.pl creates the ANN testing �les for training

group members. It reads from non_train/tst??? �les and test_data/tst???

�les, then writes to test_data/tsf???. For each training group member, all

140 samples from each non-training group member (140∗40 = 5, 600) and 100

testing samples from each of the other training group members (100 ∗ 49 =

4, 900), are appended to the 100 testing samples for that member (giving 10,600

samples).

9. Training The ANN: The script execTrn.pl executes ANN training using the

executable program `mbp' in the `mbpann' directory.

10. Testing The ANN: The script execTst.pl executes ANN testing using the

executable program `mbpval' in the `mbpann' directory.

11. Best Con�guration: The script numMLN.pl compiles information to help

select the best ANN con�guration. That is, the ANN con�guration (more pre-

cisely the number of hidden layer neurons) that performed with best accuracy

based on the outcome from testing. After running numMLN.pl, the procedure

required manually selecting possible candidate con�gurations.

12. Calculate Results: The script runROC.pl calls the executable program `cal-

cROC'. This program reads from test_data/*.out �les, then calculates and

plots the ROC points on an ROC graph. The �nal decision threshold is de-

termined and the FAR and FRR performance variables (at that threshold)

calculated. Output is written to results/???.dat.

The following target �les were required for training and testing the ANN:
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File kd.trn: The target �le for training the keystroke dynamics data contained 79

lines. The target for positive case training samples was the value 1. Therefore,

the �rst 30 lines were 1's and corresponded to the 30 positive case training

samples. The target for the negative case training samples was -1. Therefore,

the last 49 lines were -1's and corresponded to the 49 negative case training

samples.

File kd.tst: The target �le for testing the keystroke dynamics data contained

10,600 lines. The target for positive case testing samples was the value 1.

Therefore, the �rst 100 lines were 1's and corresponded to the 100 positive

case testing samples. The target for the negative case testing samples was -1.

Therefore, the remaining 10,500 lines were -1's and corresponded to the 10,500

negative case testing samples.

File kd.val: The target �le for cross validation (during training) of the keystroke

dynamics data contained 10 lines, with each line providing a correspondence

between the target value 1 and a validation sample.

C.2 Fingerprint Recognition Phase Software

As presented in Chapter 5 section 5.5.1, the program used to capture �ngerprint fea-

ture data was developed using Visual C++. This program presented participants

with a Graphical User Interface (GUI) to facilitate the �ngerprint scanning proce-

dure (see Figure 5.3). The program utilised the Veri�nger Software Development

Kit (SDK) 4.2 Visual C++ library to interface with the �ngerprint scanning device

and to extract the �ngerprint features.

For the development of the remainder of the software the following directory

structure was required. A `�ngerprints' directory contained all software for this

phase of the experiment. Again a parent directory (mbpann) to the �ngerprints

directory contained all software related to the ANN utilised.

Table C.2 illustrates the subdirectories (and their contents) that were required

under the �ngerprints directory. Their requirement will become clear as the software

is described.
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Directory Contents

data output from executing ppm program
feature_data �les containing extracted features from captured data
metrics_data �les containing selected metrics
metrics_norm �les containing normalised selected metrics_mm
non_train non-training data �les (used for testing only)
preprocess described in section C.2.1
raw_data .raw and .msd �les captured during data collection
results results from testing
train_data training data �les
test_data test data �les
validation_data validation �les (during training)

Table C.2: Fingerprint Recognition Directory Structure

C.2.1 Pre-processing

Under the �ngerprint/preprocess directory, the following pre-processes were imple-

mented (in the order listed), using the speci�ed software:

1. Calculate Means: The script calcMeans.pl reads from �ngerprints/raw_data/

*.msd �les and outputs to ./means.out. It determines the frequency of the

minutiae counts that occur in all samples per participant (importantly, the

minutiae count with the highest frequency). This information is required by

the next script � runfmi.pl.

2. Determine Model Image: The script runfmi.pl passes the following informa-

tion to the executable program `�ndModelImage' (per participant): the total

number of samples, the minutiae count that occurs most frequently, and the

number of times that minutiae count occurs. The program uses this informa-

tion in determining the model image for each participant. Input is read from

�ngerprints/feature_data/*.ftr, and output is written to index.ref.

3. Align Images: The script runppm.pl passes the the sample number of a par-

ticipants model image to the executable program `ppm'. The program aligns

all samples from the same participant with their model image (using the point

pattern matching algorithm described in Chapter 5 section 5.5.4). Input is read

from �ngerprints/feature_data/*.ftr, and written to �ngerprints/data/*.err,

�ngerprints/data/*.ppm, and �ngerprints/data/*.tab.



474 APPENDIX C.

3. Non-Aligned Images: The script �ndError.pl reads from �ngerprints/data/

*.err �les and outputs to �ngerprints/data/*.out. Output from this script iden-

ti�es the number of samples (per participant) that were not correctly aligned.

N.B. Each participant required 140 aligned samples.

4. Extract Metrics: The script extractMetics.pl reads from �ngerprints/data/

*.err, �ngerprints/data/*.ppm, and �ngerprints/data/*.tab �les and outputs

to ../metrics_data/m???.txt (also redirects stdout to the �le a.out on command-

line). The information in a.out and �ngerprints/data/*.tab �les are used to

determine whether any participants data did not provide 140 samples for train-

ing. Note was it deemed acceptable to allow one feature to be missing in

approximately 40 samples. If any participants data exceeded this restriction,

their data was seriously considered for replacement.

C.2.2 Experimental Procedure

Under the �ngerprints directory, the following procedures were implemented (in the

order listed), using the speci�ed software:

1. Normalisation: The script normalise.pl reads �les from metrics_data/m???.txt,

normalises the chosen metrics (using the min/max normalisation method) and

writes output to �les in metrics_norm/m???.txt.

2. Order By Means: The script selectBestMeans.pl reads from metrics_data/

m???.txt �les and write output to metrics_data/???.means �le. The script

orders the samples according to metric proximity to their means. The samples

are written in ascending order (per line) for all 140 samples, and are used in

the selection of validation and training samples.

3. Member Selection: The script randParts.pl uses the same allocation of par-

ticipants (to the training and non-training groups) as was used in section

C.1.2 point 4. The non-training group members data �les are moved from

metrics_norm to non_train directory (these data are used for testing pur-

poses only), and the training group members data �les are moved from met-

rics_norm to train_data directory.
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4. Validation Data: The script valFiles.pl randomly selects 10 samples (from 140

available) from each training group members metrics �le (i.e. train_data/

m???.txt and metrics_data/???.means). The chosen samples are written to

validation_data/val??? �les, and are used for cross validation during training.

Note the selected samples are removed from the metrics �les, leaving 130

available in each training group members metrics �le.

5. Training Samples: The script randSamples.pl randomly selects 30 training

samples (from the remaining 130) from each training group members met-

rics �le (i.e. train_data/m???.txt and metrics_data/???.means). The chosen

samples are written to train_data/trn??? �les, and are used for training pur-

poses only. The remaining 100 samples for each training group member (left

after training and validation samples have been removed) are used as testing

samples and are written to test_data/tst??? �les.

6. Training Data: The script trnFiles.pl creates the ANN training �les for train-

ing group members. It reads from train_data/trn??? �les and writes to

train_data/trf???. For each training group member, the script randomly se-

lects (without removing) one training sample from each of the other 49 training

group members, and appends these to the 30 samples for that member. This

results in 79 samples (30 + 49) per training �le per training group member.

7. Testing Data The script tstFiles.pl creates the ANN testing �les for training

group members. It reads from non_train/tst??? �les and test_data/tst???

�les, then writes to test_data/tsf???. For each training group member, all

140 samples from each non-training group member (140∗40 = 5, 600) and 100

testing samples from each of the other training group members (100 ∗ 49 =

4, 900), are appended to the 100 testing samples for that member (giving 10,600

samples).

8. Training The ANN: The script execTrn.pl executes ANN training using the

executable program `mbp' in the `mbpann' directory.
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9. Testing The ANN: The script execTst.pl executes ANN testing using the ex-

ecutable program `mbpval' in the `mbpann' directory.

10. Best Con�guration: The script numMLN.pl compiles information to help

select the best ANN con�guration. That is, the ANN con�guration (more pre-

cisely the number of hidden layer neurons) that performed with best accuracy

based on the outcome from testing. After running numMLN.pl, the procedure

required manually selecting possible candidate con�gurations.

12. Calculate Results: The script runROC.pl calls the executable program `cal-

cROC'. This program reads from test_data/*.out �les, then calculates and

plots the ROC points on an ROC graph. The �nal decision threshold is de-

termined and the FAR and FRR performance variables (at that threshold)

calculated. Output is written to results/???.dat.

The following target �les were required for training and testing the ANN:

File fp.trn: As for the �le kd.trn (described in section C.1.2), the target �le for

training the �ngerprint recognition data contained 30 lines of 1's and 49 lines

were -1's.

File fp.tst: As for the �le kd.tst (described in section C.1.2), the target �le for

testing the �ngerprint recognition data contained 100 lines of 1's and 10,500

lines were -1's.

File fp.val: As for the �le kd.val (described in section C.1.2), the target �le for

cross validation (during training) of the �ngerprint recognition data contained

10 lines of 1's.

C.3 Data Fusion Phase Software

As the data fusion phase utilised the data sets from the previous two phases of

the experiment, no capture program or feature selection or pre-processing of raw

data was required. This meant that for this of phase of the experiment, software
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to perform data fusion was all that was required. The development of the software

required for the data fusion phase, was undertaken for the two data fusion paradigms

discussed in Chapter 2 section 2.3.1.1 (complementary and cooperative). The next

two section list the sequence in which the software were developed, and the tasks

that they were designed to perform.

A `dataFusion' directory contained all software for this phase of the experiment.

Again a parent directory (mbpann) to the dataFusion directory contained all soft-

ware related to the ANN utilised.

C.3.1 Complementary Data Fusion Software

Under the dataFusion directory, a `complementary' directory contained all software

for this phase of the experiment. Table C.3 illustrates the subdirectories (and their

contents) that were required under the complementary directory. Their requirement

will become clear as the software is described.

Directory Contents

results results from testing
train_data training data �les
test_data test data �les
validation_data validation �les (during training)

Table C.3: Complementary Data Fusion Directory Structure

Under the dataFusion/complementary directory, the following procedures were

implemented (in the order listed), using the speci�ed software:

1. Merge Data: The script mergeData.pl reads the following �les from under the

keystrokes and �ngerprints directories:

• �ngerprints/validation_data/vaf???

• �ngerprints/train_data/trf???

• �ngerprints/test_data/tsf???

• �ngerprints/non_train/tst???

• keystrokes/validation_data/vaf???
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• keystrokes/train_data/trf???

• keystrokes/test_data/tsf???

• keystrokes/non_train/tst???

The script concatenates the �ngerprint recognition data to end of the keystroke

dynamics data in each of the associated �les (as set out above), and writes the

merged data to corresponding �les in the train_data, test_data, and valida-

tion_data directories.

2. Training The ANN: The script execTrn.pl executes ANN training using the

executable program `mbp' in the `mbpann' directory.

3. Testing The ANN: The script execTst.pl executes ANN testing using the ex-

ecutable program `mbpval' in the `mbpann' directory.

4. Best Con�guration: The script numMLN.pl compiles information to help se-

lect the best ANN con�guration. That is, the ANN con�guration (more pre-

cisely the number of hidden layer neurons) that performed with best accuracy

based on the outcome from testing. After running numMLN.pl, the procedure

required manually selecting possible candidate con�gurations.

5. Calculate Results: The script runROC.pl calls the executable program `cal-

cROC'. This program reads from test_data/*.out �les, then calculates and

plots the ROC points on an ROC graph. The �nal decision threshold is de-

termined and the FAR and FRR performance variables (at that threshold)

calculated. Output is written to results/???.dat.

The following target �les were required for training and testing the ANN:

File df.trn: As for the �le kd.trn (described in section C.1.2), the target �le for

training the complementary data fusion data contained 30 lines of 1's and 49

lines were -1's.

File df.tst: As for the �le kd.tst (described in section C.1.2), the target �le for

testing the complementary data fusion data contained 100 lines of 1's and

10,500 lines were -1's.
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File df.val: As for the �le kd.val (described in section C.1.2), the target �le for cross

validation (during training) of the complementary data fusion data contained

10 lines of 1's.

C.3.2 Cooperative Data Fusion Software

Under the dataFusion directory, a `cooperative' directory contained all software for

this phase of the experiment. Table C.4 illustrates the subdirectories (and their

contents) that were required under the complementary directory. Their requirement

will become clear as the software is described.

Directory Contents

fp - �les containing approximate relative local
gains of �ngerprint metrics.

kd - �les containing approximate relative local
gains of keystroke metrics.

train_data - contains �les copied from dataFusion/
complementary/train_data/trf???.

test_data - contains �les copied from dataFusion/
complementary/test_data/tsf???.

validation_data - contains �les copied from dataFusion/
complementary/validation_data/vaf???.

merged merged40
merged50
merged60
merged70

merged training, testing, and validation
sample �les (in train_data, test_data,
validation_data directories) for each of the
4 stages.

results results40
results50
results60
results70

results for each of the 4 stages.

trained trained40
trained50
trained60
trained70

ANN training �les for each of the 4 stages.
The appropriate cross validation �les are
also stored in the directories associated
with each stage.

tested tested40
tested50
tested60
tested70

ANN testing �les for each of the 4 stages.

Table C.4: Directory Structure

Note that the following �les are copied to train_data/, test_data/, and valida-

tion_data/ (respectively):
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• dataFusion/complementary/train_data/trf???,

• dataFusion/complementary/ test_data/tsf???, and

• dataFusion/complementary/validation_data/vaf???

These are used to create the training, testing, and validation �les for the 4 stages

(i.e. 40%, 50%, 60%, and 70%) of the cooperative data fusion phase.

Under the dataFusion/cooperative directory, the following procedures were im-

plemented (in the order listed), using the speci�ed software:

1. Calculate Local Gains: The script calcLocalGains.pl reads the weight �les

(*.w) from the �ngerprint and keystroke complementary test_data/ directo-

ries. Calculates the approximate relative local gains for each input layer neuron

for each participant. Sorts them in descending order but maintains correspon-

dence between gains and neuron numbers. Writes output to fp/fpmetrics.txt

and kd/kdmetrics.txt.

2. Calculate Proportions: The script calcProportions.pl reads from the �les /fp/

fpmetrics.txt and ./kd/kdmetrics.txt, and determines the ratio between keystroke

and �ngerprint local gains. This information is used to determine the appro-

priate proportions of each characteristic to use in the merging process. Writes

output to proportions.txt.

3. Fuse Data: The script fuseMetrics.pl reads metrics �les (train_data/trf???,

test_data/tsf??, and validation_data/vaf??? respectively), local gain �les

(fp/fpmetrics.txt and kd/kdmetrics.txt), and proportions.txt. Uses this in-

formation to select appropriate features and merges them into metrics �les.

Writes output for di�erent quantities of input layer neurons. The complemen-

tary data �les have 76 input layer neurons per sample, so the data fusion �les

are written to contain 40%, 50%, 60%, and 70% of that total per sample re-

spectively. Metrics �les are written to corresponding directories under merged

directory.
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4. Training The ANN: The script execTrn.pl executes ANN training using the

executable program `mbp' in the `mbpann' directory.

5. Testing The ANN: The script execTst.pl executes ANN testing using the ex-

ecutable program `mbpval' in the `mbpann' directory.

6. Best Con�guration: The script numMLN.pl compiles information to help se-

lect the best ANN con�guration. That is, the ANN con�guration (more pre-

cisely the number of hidden layer neurons) that performed with best accuracy

based on the outcome from testing. After running numMLN.pl, the procedure

required manually selecting possible candidate con�gurations.

7. Calculate Results: The script runROC.pl calls the executable program `cal-

cROC'. This program reads from test_data/*.out �les, then calculates and

plots the ROC points on an ROC graph. The �nal decision threshold is de-

termined and the FAR and FRR performance (at that threshold) calculated.

Output is written to results/???.dat.

8. Repeat points 4 -> 7 for next percentage.

The following target �les were required for training and testing the ANN:

File df.trn: As for the �le kd.trn (described in section C.1.2), the target �le for

training the keystroke dynamics data contained 30 lines of 1's and 49 lines

were -1's.

File df.tst: As for the �le kd.tst (described in section C.1.2), the target �le for

testing the keystroke dynamics data contained 100 lines of 1's and 10,500 lines

were -1's.

File df.val: As for the �le kd.val (described in section C.1.2), the target �le for

cross validation (during training) of the keystroke dynamics data contained 10

lines of 1's.
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As described above, programs were written for data collection, feature extrac-

tion, pre-processing, data fusion, and data analysis. The total number of lines of

code developed for the project was approximately 15,000. It should be noted that

the Perl scripts�which were used to perform �le and data handling, and to execute

other programs�were �rst developed for phase 1 of the experiment (keystroke dy-

namics). Numerous Perl scripts were re-used for phases 2 and 3 of the experiment

(�ngerprint recognition and feature level data fusion), though in nearly all cases

major modi�cation was required to suit the particular requirements of each phase.



Appendix D

D.1 Keystroke Dynamics ROC Examples

This appendix presents (in the order listed) �gures illustrating the ROC graphs for

participants whose performance demonstrated:

• The best classi�cation performance.

• Good classi�cation performance.

• Average classi�cation performance.

• The worst classi�cation performance.
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Figure D.1: Best Classi�cation Performance � Participant 52

Figure D.2: Good Classi�cation Performance � Participant 18
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Figure D.3: Good Classi�cation Performance � Participant 27

Figure D.4: Good Classi�cation Performance � Participant 60
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Figure D.5: Average Classi�cation Performance � Participant 38

Figure D.6: Average Classi�cation Performance � Participant 49
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Figure D.7: Average Classi�cation Performance � Participant 61

Figure D.8: Worst Classi�cation Performance � Participant 3



488 APPENDIX D.

Figure D.9: Worst Classi�cation Performance � Participant 12

Figure D.10: Worst Classi�cation Performance � Participant 74
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