Modelling the role of algae in rice crop nutrition and soil organic carbon maintenance

Abstract

Photosynthetic aquatic biomass (PAB โ€“ algae and other floodwater flora) is a significant source of organic carbon (C) in rice-based cropping systems. A portion of PAB is capable of fixing nitrogen (N), and is hence also a source of N for crop nutrition. To account for this phenomenon in long term simulation studies of rice-based cropping systems, the APSIM modelling framework was modified to include new descriptions of biological and chemical processes responsible for loss and gain of C and N in rice floodwater. We used well-tested algorithms from CERES-Rice, together with new conceptualizations for algal dynamics, in modelling the contribution of PAB to maintenance of soil organic C and soil N-supplying capacity in rice-based cropping systems. We demonstrate how our new conceptualization of PAB growth, turnover, and soil incorporation in flooded rice systems facilitates successful simulation of long-term soil fertility trials, such as the IRRI Long Term Continuous Cropping Experiment (35+ years), from the perspectives of both soil organic carbon levels and yield maintenance. Previous models have been unable to account for the observed maintenance of soil organic C in these systems, primarily due to ignoring inputs from PAB as a source of C. The performance of long-term rice cropping system simulations, with and without inclusion of these inputs, is shown to be radically different. Details of our modifications to APSIM are presented, together with evidence that the model is now a useful tool to investigate sustainability issues associated with management change in rice-based cropping systems

Similar works

Full text

thumbnail-image

Wageningen University & Research Publications

redirect
Last time updated on 30/06/2015

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.