Is crop N demand more closely related to dry matter accumulation or leaf area expansion during vegetative growth?

Abstract

The critical crop nitrogen uptake is defined as the minimum nitrogen uptake necessary to achieve maximum biomass accumulation (W). Across a range of crops, the critical N uptake is related to W by a power function with a coefficient less than unity that suggests crop N uptake is coregulated by both soil N supply and biomass accumulation. However, crop N demand is also often linearly related to the expansion of the leaf area index (LAI) during the vegetative growth period. This suggests that crop N demand could be also linked with LAI extension. In this paper, we develop theory to combine these two concepts within a common framework. The aim of this paper is to determine whether generic relationships between N uptake, biomass accumulation, and LAI expansion could be identified that would be robust across both species and environment types. To that end, we used the framework to analyze data on a range of species, including C-3 and C-4 ones and mono- and di-cotyledonous crops. All crops were grown in either temperate or tropical and subtropical environments without limitations on N supply. The relationship between N uptake and biomass was more robust, across environment types, than the relationship of LAI with biomass. In general, C3 species had a higher N uptake per unit biomass than C4 species, whereas dicotyledonous species tended to have higher LAI per unit biomass than monocotyledonous ones. Species differences in N uptake per unit biomass were partly associated with differences in LAI and N-partitioning. Consequently the critical leaf-N uptake per unit LAI (specific leaf nitrogen, SLN) was relatively constant across species at 1.8-2.0 g m(-2), a value that was close to published data on the critical SLN of new leaves at the top of the canopy. Our results indicate that critical N uptake curves as a function of biomass accumulation may provide a robust platform for simulating N uptake of a species. However, if crop simulation models are to capture the genotypic and environmental control of crop N dynamics in a physiologically functional manner, plant growth has to be considered as the sum of a metabolic (e.g. leaves) and a structural (e.g. stems) compartment, each with its own demand for metabolic and structural N. (c) 2006 Elsevier B.V. All rights reserved

Similar works

Full text

thumbnail-image

University of Queensland eSpace

redirect
Last time updated on 30/08/2013

This paper was published in University of Queensland eSpace.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.